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Kurzfassung

Fahrzeugkollisionen verursachen jedes Jahr über eine Million Todesfälle und führen zu
erheblichen wirtschaftlichen Verlusten. Dennoch verlassen sich Versicherungsgesellschaf-
ten weiterhin auf manuelle, arbeitsintensive Schadensbewertungsprozesse, die langsam,
fehleranfällig und schwer skalierbar sind. Daher ist eine automatisierte und genaue Be-
wertung von Fahrzeugschäden entscheidend, um die Bearbeitungszeit von Schadensfällen
zu verkürzen, die Konsistenz der Schätzungen zu verbessern und die Kosten in der
Kfz-Versicherungsbranche zu kontrollieren.

Diese Arbeit geht diese Herausforderung an, indem sie die Bewertung von Fahrzeugschäden
als Benchmark-Aufgabe für die Bewertung von Feinabstimmungsstrategien für modernste
Vision-Language-Modelle (VLMs) unter strengen Daten- und Energiebeschränkungen neu
definiert. Ein multimodaler Korpus aus Fahrzeugbildern und textuellen Schadensbeschrei-
bungen wird zusammengestellt und sowohl in roher als auch in vollständig vorverarbeiteter
Form bereitgestellt, wobei letztere Qualitätsfilter wie Unschärferkennung, Belichtungs-
steuerung, Kontrastschwellenwert und Entfernung von Nahe-Duplikaten enthält. Fünf
hochmoderne kompakte VLM-Architekturen, die für den Einsatz mit geringen Ressourcen
entwickelt wurden (LLaVA, Qwen-VL, Bunny, Phi und SmolVLM), werden anhand eines
repräsentativen Testsatzes bewertet. Anschließend wird das stärkste Basismodell mithilfe
mehrerer Strategien domänenspezifisch feinabgestimmt. Die daraus resultierenden Kom-
promisse zwischen Energieverbrauch und Leistung werden mathematisch modelliert, um
die effizienteste Konfiguration zu ermitteln.

Experimente zeigen, dass eine gezielte Feinabstimmung auf einem sorgfältig zusammenge-
stellten Datensatz zu erheblichen Verbesserungen der praktischen Anwendbarkeit führt.
Es wurde eine deutliche Verringerung des Energieverbrauchs im Vergleich zu Basismodel-
len beobachtet, verbunden mit einer bemerkenswerten Steigerung der Gesamtgenauigkeit
und einer geringeren Inferenzlatenz. Im Vergleich zu einem naiv zusammengestellten
Datensatz führt der kuratierte Korpus zu deutlich höheren Bewertungsmetriken, während
gleichzeitig das Training beschleunigt und die Energieeffizienz deutlich verbessert wird.
Diese Ergebnisse zeigen, dass eine energieeffiziente Feinabstimmung kompakter VLMs
eine automatisierte Fahrzeugschadensbewertung für ressourcenbeschränkte Versicherungs-
abläufe praktikabel machen kann.
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Abstract

Vehicle collisions cause over a million deaths each year and generate substantial economic
losses. However, insurance companies continue to rely on manual and labor-intensive
damage appraisal workflows that are slow, error-prone, and difficult to scale. Thus,
an automated and accurate assessment of vehicle damage is crucial to reducing claim
processing time, improving the consistency of estimates, and controlling costs in the
automotive insurance industry.

This thesis tackles this challenge by reframing vehicle damage evaluation as a benchmark
task to evaluate fine-tuning strategies in state-of-the-art vision-language models (VLMs)
under strict data and energy constraints. A multimodal corpus of vehicle images and
textual damage descriptions is assembled and provided in both raw and fully preprocessed
forms, the latter incorporating quality filters such as blur detection, exposure control,
contrast thresholding, and near-duplicate removal. Five state-of-the-art compact VLM
architectures, designed for low-resource deployment (LLaVA, Qwen-VL, Bunny, Phi
and SmolVLM) are benchmarked on a representative test set, after which the strongest
baseline model undergoes domain-specific fine-tuning using multiple strategies. The
resulting energy-performance trade-offs were mathematically modeled to identify the
most efficient configuration.

Experiments demonstrate that targeted fine-tuning on a carefully curated dataset yields
substantial improvements in practical utility. Specifically, the optimized model config-
uration achieved a 58.7% reduction in inference energy consumption compared to the
baseline, while simultaneously increasing the F1-score from 61.05% to 68.35%. Compared
to a naively constructed dataset, the curated corpus resulted in superior predictive per-
formance while reducing training energy by 19.5%. Furthermore, a break-even analysis
reveals that the energy cost of fine-tuning is recovered after processing approximately
48,000 images. These results indicate that energy-efficient fine-tuning of compact VLMs
can make automated vehicle damage assessment viable for resource-constrained insurance
workflows.
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CHAPTER 1
Introduction

This thesis investigates the use of vision-language models (VLMs) for automated vehicle
damage evaluation in energy-constrained environments. The research focuses on energy-
aware inference and fine-tuning strategies that trade off predictive accuracy, inference
latency, and power consumption across visual and textual data modalities. The work
develops a dataset and an evaluation pipeline to compare compact, low-resource VLMs
and to identify resource-efficient model adaptation approaches suitable for production
insurance workflows.

1.1 Motivation
Road traffic injuries are a major global health and economic concern. According to
the World Health Organization (WHO), vehicle accidents result in approximately 1.19
million annual fatalities globally and cost nations several percent of their gross domestic
product (GDP) [Org23]. Given the large scale of these accidents, the insurance industry
is facing scaling challenges while attempting to mitigate the financial repercussions of
these incidents. Since 2020, the severity of bodily injury has risen by 20%, while material
damage costs have surged by 47% among Generation Z drivers [Sol24]. Automotive
insurance claim processing remains heavily reliant on manual inspections, whether
performed in person or via photos and written reports. This dependency results in
prolonged turnaround times, inconsistent evaluations, and escalating operational costs
[AMNA24]. These challenges highlight the need for the insurance industry to embrace
new solutions that will more effectively process the increasing volume of claims.

Automating damage appraisal with image analysis has clear potential to reduce these
inefficiencies. However, recent research has highlighted the drawbacks of current methods,
which typically overlook textual claim data and rely solely on image analysis [WLW23].
Textual data, typically found in incident reports, witness statements, or damage de-
scriptions, provide essential context and granularity that images alone may miss. This
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1. Introduction

single-modality limitation reduces the robustness and granularity of automated damage
assessments [ZYHD20]. Another significant drawback of current large single-modality
models is their computational inefficiency and high resource demands. These factors not
only drive up operational costs but also limit effective scalability [TGLM20].

Figure 1.1: An example illustrating the limitations during the training of a large single-
modality model like GPT-4 [Ope23]. Three major challenges are highlighted: (1) Energy
Waste; (2) Data Hunger; and (3) Brittle Inference.

As highlighted in Figure 1.1, the three main limitations when training large single-modality
models such as GPT-4 are energy waste, data hunger, and brittle inference. While the
substantial energy costs are detailed in the following section, the data requirements are
equally staggering; training such models often necessitates datasets exceeding trillions of
tokens, a scale that is increasingly difficult to sustain with high-quality data. Furthermore,
these models suffer from brittle inference, where slight perturbations in input or shifts
in domain can lead to disproportionately large errors, undermining their reliability in
safety-critical applications like insurance assessment [Ope23].

Recent advances in multimodal deep learning, particularly in integrating vision and
language models, hold significant promise in automating complex analysis tasks and
improving overall efficiency in this field [GWW19]. By combining textual data and
images, multimodal models are able to provide a more holistic approach to vehicle
damage assessment. However, state-of-the-art VLMs such as Large Language and
Vision Assistant (LLaVA) [LLLL24] and Qwen [BBC+23] often require massive datasets
and high computational resources to reach peak performance. This raises important
challenges around scalability, environmental impact, and deployment feasibility, especially
for industries like insurance that demand real-time processing at scale. Training large
multimodal models consumes significant amounts of energy: for example, training GPT-
3 [BMR+20] required approximately 1,287 MWh of electricity and emitted an estimated
552 t of CO2, raising not only financial but also serious sustainability concerns [PGL+21].
A recent study by Google provides insights into the inference-time energy costs of
large-scale artificial intelligence (AI) systems. Google Gemini [ABW+23] production
deployments show that the median text prompt consumes just 0.24 Wh of energy, which
is equivalent to less than nine seconds of television viewing, while using about 0.26 mL of
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1.2. Research Questions and Objectives

water for cooling, factoring in accelerator, host, idle, and data center overheads [EHP+25].
The creation of BLOOM [SFA+22], a 176B parameter open-access language model,
provides further evidence of the environmental cost of extensive training. Its authors
estimated total emissions of approximately 50.5 t CO2eq when accounting for all processes,
including power and equipment [LVL23].

These findings present a critical challenge: balancing high-performance inference with the
urgent need to mitigate the environmental impact of training and deploying these models.
A significant gap remains in designing architectures that simultaneously optimize accuracy,
inference latency, and energy efficiency within constrained environments. Rather than
replacing human inspectors, this thesis explores how AI can serve as a companion tool
to assist insurance professionals by speeding up the appraisal process while maintaining
reliability and scalability.

1.2 Research Questions and Objectives
This thesis seeks to answer the following research questions:

1. RQ1: How does the performance of a compact multimodal model fine-tuned on a
dataset of car damage images and text descriptions compare to general-purpose
VLMs in detection accuracy, processing time, and energy usage?

2. RQ2: What impact does a structured data curation pipeline have on model
generalization and data efficiency versus naive aggregation?

3. RQ3: To what extent can energy-efficient model adaptation techniques minimize
energy consumption while maintaining or improving model accuracy?

The primary objective of this thesis is to develop and fine-tune a sustainable, efficient,
and scalable VLM specifically optimized for automated vehicle damage assessment. To
address these research questions, the following steps will be undertaken:

1. Curate a Multimodal Benchmark: Assemble and preprocess a representative
corpus of paired vehicle-damage images and structured textual descriptions to
enable joint vision-language learning and evaluation (addresses RQ2).

2. Evaluate State-of-the-Art Compact VLMs: Benchmark five leading open-
source VLM architectures (LLaVA [LLLL24], Qwen [BBC+23], Bunny [HLW+24],
Phi-3 [AJA+24], and SmolVLM [MZF+25]) on practical tasks such as damage
classification and type localization. The best performing model in terms of accuracy
and energy usage will be selected for fine-tuning (addresses RQ1).

3. Design an Energy-Efficient Fine-Tuning Pipeline: Develop and integrate
techniques to reduce compute and energy usage while maintaining performance.
This includes:

3



1. Introduction

• Clustering-based deduplication and automated quality filtering to minimize
redundant or noisy data.

• Employ Unsloth [HHt23] to implement fast, resource-efficient training methods
and lightweight model adaptation strategies.

• Compare image-only learning with joint image and text learning to determine
which approach is more effective under limited data and energy constraints.

• Apply iterative pruning to reduce model size and inference latency.
• Adjust input prompts to enhance accuracy while minimizing energy usage.
• Apply quantization techniques to reduce memory and computational require-

ments with minimal performance loss (addresses RQ2, RQ3).

4. Measure Sustainability Metrics: Use NVIDIA Management Library (NVML)
[NVI25] to log graphics processing unit (GPU) energy consumption for each train-
ing run, enabling transparent reporting of the computational footprint of every
optimization (addresses RQ3).

5. Compare Fine-Tuned VLM to General VLMs: Benchmark the fine-tuned
model against off-the-shelf VLMs, using metrics such as accuracy, precision, recall,
F1-score, inference latency, and energy consumption per prediction (addresses
RQ1).

The expected outcome is a fine-tuned VLM capable of accurate vehicle damage detection
while minimizing energy consumption. By prioritizing efficiency and low energy consump-
tion, the model aims to support insurance inspectors in accelerating claims processing
while contributing to sustainable AI practices.

1.3 Outline
This thesis is organized as follows. Chapter 2 provides the theoretical background for
the methods used in this research. Key concepts related to damage assessment in the
insurance industry are introduced, as well as the basics of image and text data integration.
The growing importance of sustainability in the context of large-scale automation and
computational models is also discussed.

Chapter 3 presents a review of related work, highlighting current challenges and ap-
proaches to automating damage evaluations, with a focus on how visual and textual
data can be integrated for more efficient claim processing. The chapter also addresses
the environmental concerns associated with large models and the need for sustainable
solutions.

Chapter 4 introduces the proposed framework for automating damage assessments,
focusing on the integration of image processing and textual claim data to improve
accuracy, efficiency, and sustainability.

4



1.3. Outline

Chapter 5 explains the experimental setup, including the datasets used for training and
testing, evaluation metrics, and the model architecture. The energy consumption and
resource demands of the model are also examined, discussing strategies to minimize
energy usage, and in turn minimize the environmental impact while ensuring scalability.

Chapter 6 discusses the results of the experimental evaluations, providing information
on the performance, efficiency, and sustainability of the model. This chapter also
compares the proposed solution with existing methods and evaluates its operational and
environmental effectiveness.

Finally, Chapter 7 summarizes the findings of this research and reflects on the possible
implications of this research on both the insurance industry and the environment. Po-
tential further improvements that can be made to make the model even more efficient,
scalable, and sustainable are discussed.
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CHAPTER 2
Background

This chapter provides the foundational knowledge necessary to understand the methods
and contributions of this thesis. It begins with a brief overview of neural networks and
the transformer architecture, which form the basis of many modern models.

The field of multimodal learning is then explored, with a focus on current state-of-the-art
VLMs such as LLaVA [LLLL24], Qwen [BBC+23], Bunny [HLW+24], Phi-3 [AJA+24],
and SmolVLM [MZF+25].

Subsequently, the task of automated vehicle damage assessment, its role in the modern
insurance industry, and the key models used in this field are introduced.

Following this, the significant computational and environmental costs associated with
training and deploying large-scale multimodal models are discussed. A major component
of this thesis is the need for more efficient training techniques that are driven by
sustainability concerns. As a result, core techniques used to reduce power consumption
in deep learning are introduced.

Finally, the importance of data quality and diversity in multimodal tasks is highlighted,
explaining how careful dataset curation can improve generalization while reducing energy
consumption.

2.1 Neural Networks and Transformers
Neural networks [LBH15] are computational models inspired by the structure of the
human brain. They consist of layers of interconnected units that process information and
learn representations from data. These advances have enabled breakthroughs in fields such
as image recognition, speech processing, and natural language understanding [LBH15].

The Transformer architecture [VSP+17] marked a significant milestone by using self-
attention mechanisms instead of recurrence or convolution. This design enables models

7



2. Background

to process extensive dependencies across sequences while maintaining parallel training
capabilities for billions of parameters [VSP+17].

2.2 Multimodal Learning and Vision-Language Models
Multimodal AI refers to machine learning (ML) models capable of processing and
integrating information from multiple modalities or types of data. These modalities
can include text, images, audio, video, and other forms of sensory input [WGC+23].
Consequently, multimodal models can produce more accurate, context-sensitive results.

For example, a model that analyzes both an image and its accompanying text can generate
responses that reflect both the visual and textual context, improving performance on
tasks such as Visual Question Answering (VQA), image captioning, and multimodal
summarization.

Figure 2.1 illustrates the concept of a multimodal model, visually representing how
different data types are fed into a unified system. This allows the model to process and
reason across these different data types, analogous to how humans integrate multiple
senses.

Figure 2.1: Architecture of a Multimodal Model

Multimodal models have advanced rapidly since the 2010s. Recent studies have shown a
32.4% improvement in accuracy for cross-modal tasks, a 41.3% increase in task completion
rates, and a 37.8% reduction in error rates. These improvements have been achieved
while maintaining fast processing speeds, averaging around 45 milliseconds [Nay25].

2.2.1 State-of-the-Art VLMs

Following the discussion on the basics of multimodal AI, several leading VLMs currently
in use are examined. These models are among the most influential and widely adopted
in the field.

8
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LLaVA

LLaVA represents a significant contribution to the field of multimodal AI, particularly
through its approach to visual instruction tuning [LLLL24]. Visual instruction tuning is
a training paradigm for multimodal models in which a Large Language Model (LLM)
and a vision encoder are fine-tuned on a dataset of image-text instruction-response pairs.
The instructions ask the model to perform tasks that depend on visual content (e.g.,
describing, reasoning, answering questions), and much of the dataset is generated by a
strong language model (e.g., GPT-4) to scale diversity. Vision embeddings are projected
into a space compatible with the language model, and then the model learns to follow
instructions that combine textual and visual input [LLWL23].

LLaVA’s architecture connects visual and language components using a projection layer.
Training typically happens in stages: first, only the projection layer is trained while
keeping the vision and language models fixed. Later, the language model is fine-tuned as
well, while the vision encoder often stays unchanged. This method helps ensure that the
visual and linguistic components are well aligned and can work together effectively to
produce coherent, context-sensitive outputs [LLWL23, LZG+25].

Qwen

Qwen-VL is an open-source large VLM known for its powerful combination of advanced
capabilities and accessibility. It features numerous improvements in resolution handling,
multimodal integration, and language coverage compared to other VLMs. One of its
key innovations is the dynamic resolution system, which allows the model to adapt to
different image sizes on the fly, ensuring that it captures more details and delivers more
accurate results across a range of inputs [BBY+24, BBC+23, WBT+24].

Another central feature is Multimodal Rotary Position Embedding (M-RoPE), which
fuses spatial and temporal information across text, images, and videos. M-RoPE allows
the model to better capture real-world 3D and time-based dynamics, making it highly
capable in video understanding and streaming content. This model has achieved state-of-
the-art performance on several industry benchmarks, such as DocVQA, InfoVQA, and
MathVista [WBT+24].

A further key feature of Qwen-VL is its exceptional multilingual support. While most
models are limited to English or Chinese, Qwen-VL supports most European languages,
Japanese, Korean, Arabic, and Vietnamese. The Qwen2-VL series includes models of
varying sizes, from the efficient Qwen2-VL-2B (designed for on-device use) to the highly
capable Qwen2-VL-72B (for complex tasks), all leveraging a 675M vision encoder and
different LLM sizes [WBT+24].

The recently introduced Qwen2.5-VL [BCL+25] builds on these strengths with sharper
reasoning and efficiency. It achieves a more precise alignment between the text and visual
modalities and demonstrates significant gains in grounding and multimodal mathematical
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2. Background

reasoning. These improvements make it especially strong for document understanding
and complex visual question answering [BCL+25].

Bunny

Bunny is a family of lightweight yet powerful multimodal models featuring plug-and-
play language and vision backbones, aligned through a multimodal projector. A major
challenge with multimodal LLMs (MLLMs) is their high compute and memory de-
mands. Although reducing model size improves efficiency, it typically impacts perfor-
mance [CWZZ17]. Bunny demonstrates that this is not necessarily the case. By focusing
on high-quality training data, it delivers small, yet competitive multimodal models. This
approach highlights that performance does not scale solely with model size, but can also
be significantly influenced by the quality of the training data [HLW+24].

Its primary innovation lies in data-centric training. Instead of relying on raw scale, Bunny
uses “dataset condensation” to build a cleaner, more informative dataset from LAION-
2B. LAION-2B is an openly available large-scale dataset consisting of approximately
2.17 billion image-text pairs collected from the web [LHLW24]. By employing semantic
deduplication, alignment filtering, and diversity sampling, it reduces billions of samples
to just 2M high-quality pairs for pre-training, plus a 695K dataset for instruction
tuning [HLW+24].

Phi-3

The Phi-3 model family represents a major advancement in the development of compact yet
high-performing language models. Its flagship variant, Phi-3-mini, contains approximately
3.8 billion parameters and was trained on roughly 3.3 trillion tokens. Notably, despite
its relatively modest size, it achieves benchmark performance, around 69% on Massive
Multitask Language Understanding (MMLU) and 8.38 on MT-bench, comparable to
substantially larger models such as GPT-3.5 and Mixtral 8×7B [AJA+24].

The core innovation of Phi-3 lies not in parameter count, but in the quality and scale of
its training corpus: a carefully curated and filtered web dataset enriched with synthetic,
chat-aligned, and safety-optimized data. The technical report further introduces scaling
variants, including Phi-3-small (≈ 7B parameters) and Phi-3-medium (≈ 14B parameters),
each trained on approximately 4.8 trillion tokens, achieving ≈ 75% and ≈ 78% on MMLU,
respectively [AJA+24].

SmolVLM

The SmolVLM family is an open-source collection of compact VLMs developed by
Hugging Face to investigate the trade-off between model size, computational efficiency,
and multimodal performance [MZF+25]. In contrast to conventional large-scale VLMs,
SmolVLM prioritizes lightweight architectures that operate effectively on consumer-grade
hardware while retaining competitive accuracy. The models span 256 million to 2.2 billion
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2.3. Automated Vehicle Damage Assessment

parameters, achieving substantial reductions in memory and computational demands
with minimal degradation in downstream performance.

A key innovation of SmolVLM lies in its balanced capacity distribution between the
vision encoder and the language model, which optimizes token compression and visual
feature representation for efficient cross-modal reasoning. The architecture employs
aggressive image token reduction strategies such as sub-image splitting and pixel shuffling,
to preserve spatial fidelity while minimizing token count. Consequently, even the smallest
variant, SmolVLM-256M, supports multimodal reasoning using less than 1 GB of GPU
memory, outperforming substantially larger systems such as Idefics-80B on certain
benchmarks [MZF+25].

2.3 Automated Vehicle Damage Assessment
Automated vehicle damage assessment refers to the use of AI and computer vision
techniques to detect, classify, locate, and estimate the severity and repair costs of vehicle
damage from images or videos, with minimal human supervision. In practical deployments,
this automation can accelerate claims processing, reduce human error and subjectivity,
improve consistency across appraisals, and enable large-scale fleet monitoring and fraud
detection [PZCGPM+24].

This process is typically integrated into the First Notice of Loss (FNOL) workflow, the
initial step in the insurance claims process where the policyholder reports an incident.
Traditionally, FNOL involves a phone call or a mobile app submission where the user
provides a textual description of the accident and uploads photos. An automated system
must then reconcile these two modalities, verifying, for instance, that a “dent on the left
bumper” described in the text matches the visual evidence provided [Cha22].

Historically, vehicle damage assessment involved in-person inspection by automotive
appraisers and manual review of numerous images, which was a time-consuming process.
This process frequently led to subjectivity, inconsistency, and delays in claims management,
contributing to financial losses for companies. The financial incentive for insurers is
a primary driver for AI adoption, compelling the industry to pursue higher precision
and lower false positive rates to minimize financial losses. High false positive rates, in
particular, can significantly contribute to financial losses, making it a key issue that AI
systems aim to address [PZCGPM+24, VAA+25].

Automated vehicle damage assessment uses powerful computer vision and deep learning
models, which enable machines to “see” and interpret images or videos. These models
can detect damage, pinpoint its location, and assess how severe it is [PZCGPM+24].
Some of the most popular and effective models used in this space include the following:

2.3.1 Convolutional Neural Networks
A broad class of deep learning architectures, convolutional neural networks (CNNs) form
the backbone of most vehicle damage detection systems. CNNs learn hierarchical feature
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representations via convolutional filters, pooling, and nonlinearities; earlier layers capture
low-level patterns (edges, textures) while deeper layers learn higher-level semantics
(parts, objects). They are trained on extensive datasets of labeled images to accurately
classify damage types, even under varying lighting and angle conditions. CNNs have
demonstrated robust performance in object detection and image classification tasks,
making them well-suited for identifying and localizing vehicle damage [Zhu25].

2.3.2 You Only Look Once
You Only Look Once (YOLO) [RDGF16] is a family of models that builds on the CNNs
paradigm and specializes in real-time object detection. Unlike generic CNNs classifiers,
YOLO reframes object detection as a single regression problem, directly predicting
bounding box coordinates and class probabilities from full images in one evaluation.
YOLO models, including YOLOv5, YOLOv7, and YOLOv8, represent state-of-the-art
deep learning architectures widely adopted for real-time object detection. These models
enable rapid and accurate detection and classification of vehicle damage, with some
ensemble approaches significantly improving inference speed to process thousands of
instances per minute. YOLOv8, in particular, has been recognized for its strength and
stability in damage detection applications [PZCGPM+24, VAA+25]. Recently, YOLOv13
has been introduced as a state-of-the-art model, demonstrating superior performance in
real-time object detection tasks [LLW+25].

2.3.3 Mask Region-Based Convolutional Neural Network
Mask Region-Based Convolutional Neural Network (Mask R-CNN) takes object recogni-
tion a step further by adding the ability to perform instance segmentation. This means
that Mask R-CNN can not only recognize objects, but also separate them into distinct
regions, even within complex scenes. For vehicle damage detection, this model can be
used to accurately crop vehicles from images and precisely identify areas of damage.
Additionally, to speed up training and improve accuracy, Mask R-CNN models are
often initialized with pretrained weights from large, diverse datasets, such as Microsoft
COCO [CJ25].

2.3.4 Residual Network
Residual Network (ResNet) models [HZRS16] are deep learning models that are par-
ticularly effective at detecting complex features and improving classification accuracy.
As demonstrated by He et al. [HZRS16], ResNets achieved a top-5 error rate of just
3.57% on the ImageNet test set, winning the 1st place in the ILSVRC 2015 classification
task, which highlights their robustness and generalization ability across domains. In the
context of vehicle damage assessment, ResNets like ResNet50 are commonly used for
identifying damaged vehicles in images. Pretrained ResNet models, such as ResNet50,
can be fine-tuned on specific vehicle damage datasets through transfer learning, leveraging
knowledge gained from broader image recognition tasks [VSBS25].
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2.3.5 Generative Adversarial Networks
Generative adversarial networks (GANs) [GPM+20] have a unique role in automated
vehicle damage assessment. As introduced by Goodfellow et al. [GPM+20], GANs are
trained by pitting two models against each other in a minimax game, where a generator
creates synthetic data and a discriminator attempts to distinguish it from real data,
leading to the generation of highly realistic samples. GANs are capable of generating
realistic images of damaged vehicles. This is particularly valuable because damaged
vehicle images are sparse and often hard to obtain. Generated vehicle damage images
can then augment training datasets and improve the robustness and generalization of
damage estimators [VSBS25].

2.3.6 Limitations of Unimodal Approaches
While the aforementioned computer vision models have advanced the state of damage
detection, they suffer from a critical limitation: they are unimodal. Models like YOLO or
ResNet process visual data in isolation, ignoring the rich contextual information contained
in the claimant’s textual report. This “semantic gap” can lead to several issues:

• Ambiguity: A visual scratch might be old wear-and-tear or fresh accident damage.
Without the textual context (e.g., “I scraped the side against a pillar yesterday”),
a vision-only model cannot distinguish relevance.

• Inconsistency: If a user reports “front bumper damage” but uploads a photo of
the rear, a unimodal model will correctly detect the rear damage but fail to flag
the inconsistency, potentially allowing fraudulent or erroneous claims to proceed.

• Lack of Reasoning: Unimodal models excel at pattern recognition but lack the
reasoning capabilities to infer causality or severity from a combination of visual
cues and descriptive narratives.

VLMs address these shortcomings by fusing visual features with linguistic semantics,
enabling a more holistic and accurate assessment process.

Despite technical progress, several operational challenges remain before automated
damage assessment can be widely adopted. Key issues include limited data, ensuring
models perform well in real-world conditions, managing high computational demands,
and integrating with legacy systems. In addition, concerns about bias, transparency,
data privacy, and accountability need to be addressed to build trust and meet regulatory
standards [PZCGPM+24, VAA+25, Zhu25, VSBS25, CJ25].

2.4 Energy-Efficient Learning Techniques
Large model training and deployment carry substantial environmental and operational
costs. For instance, a training run for a 175B-parameter model such as GPT-3 has been
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reported to consume on the order of 1,287 MWh of electricity and emit roughly 552
metric tons of CO2. Furthermore, this energy consumption continues after the model is
trained. For instance, a single ChatGPT query uses roughly five times the energy of a
typical web search [Zew25].

These energy demands are not just limited to the training phase. On the infrastructure
side, data-center electricity demand has surged: North American data-center capacity
roughly doubled (from ≈2,688 MW to 5,341 MW between 2022 and 2023), and global data-
center power use reached ≈460 TWh in 2022, surpassing the total energy consumption
of many nations [Zew25].

Concurrently, Strubell et al. [SGM19] estimate that developing modern NLP models, once
hyperparameter tuning and repeated experimentation are included, can emit hundreds of
thousands of kilograms of CO2, comparable to the lifetime emissions of several cars. More
recent large-scale efforts report similarly sobering figures: the training of BLOOM-176B
alone produced ≈25-50 tonnes CO2eq, depending on whether only electricity use or
broader operational factors are considered [LVL23].

These numbers clearly illustrate the enormous compute and energy resources required
by large multimodal models, both during their training and deployment. The resulting
environmental costs (electricity use, carbon emissions, water usage, electronic waste, etc.)
are now comparable to those of small countries. This reality has driven the rise of “Green
AI” research, which seeks methods to preserve model performance while cutting resource
consumption.

2.4.1 Core Efficiency Techniques

To address the energy challenges posed by large models, researchers have developed a
variety of techniques to improve efficiency and reduce computational costs. One of the
most common approaches is model compression, which includes strategies such as pruning,
quantization, and knowledge distillation [PSUL25]. These techniques aim to make models
smaller and faster without sacrificing too much accuracy. Recent surveys highlight
the growing importance of these methods: Zhu et al. [ZLL+24] provide an overview
of compression strategies for LLMs, while a more recent study focuses on transformer-
specific compression techniques, including architectural modifications alongside pruning,
quantization, and distillation [TWG+24].

Pruning

Pruning is a technique that involves removing unnecessary weights or neurons from a
neural network. By eliminating these redundant elements, pruning reduces the overall
size of the model and the number of computations (known as floating point operations, or
FLOPs) required during inference. The result is a more efficient model that can perform
predictions faster and with less resource consumption [PSUL25].
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Figure 2.2, which was inspired by [PSUL25], illustrates the pruning process. It shows
how a dense, fully-connected network is gradually transformed into a sparser version by
removing less important connections.

Figure 2.2: Comparison Between Unpruned and Pruned Models. The figure shows a
dense, unpruned model (left) with all connections intact versus a pruned model (right)
with less significant connections removed.

Quantization

Quantization is another key technique for improving the energy efficiency of deep learning
models. It involves reducing the numerical precision of the model’s weights and activa-
tions. For example, instead of using 32-bit floating point numbers, quantization maps
these values to smaller representations, such as 8-bit integers or even fewer bits. This
reduction in precision helps reduce both the memory requirements and computational
costs, as smaller numbers take less space to store and require less processing power to
handle [PSUL25].

Quantization can be applied in two main ways: post-training quantization (PTQ) and
quatization-aware training (QAT). PTQ converts a pre-trained model to lower precision
without retraining, making it fast and easy to apply but potentially leading to accuracy
loss. QAT, on the other hand, simulates quantization effects during the training process,
allowing the model to adapt to the lower precision and typically yielding better perfor-
mance at the cost of increased training time [PSUL25]. The PTQ process is shown in
Figure 2.3.

Knowledge distillation

Knowledge distillation is a technique that involves training a smaller model, called the
“student,” to mimic the behavior of a larger, more complex model, called the “teacher.”
The goal here is to transfer the performance capabilities of the larger model to a more
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Figure 2.3: PTQ process. This figure outlines the process of applying PTQ to the
ALBERT model, showing data calibration, OpenVINO IR conversion, and quantization
into INT8 format for efficient inference ([PSUL25], Fig. 11).

compact and efficient one, maintaining similar accuracy while significantly reducing the
size and complexity of the network [PSUL25].

As illustrated in Figure 2.4, the student model learns by minimizing a combined loss
function. This loss typically consists of two components: a distillation loss, which aligns
the student’s “soft” class probabilities with those of the teacher, and a standard student
loss that compares the student’s predictions against the ground truth labels. This dual
objective ensures the student not only learns the correct answers but also mimics the
teacher’s generalization patterns [PSUL25].

Research has shown that applying techniques such as pruning, quantization, and knowl-
edge distillation can lead to substantial environmental benefits. For example, a study
found that combining pruning and distillation reduced the energy consumption of a
Transformer model (BERT) by about 32% while preserving nearly 96% of the model’s
accuracy [PSUL25]. This shows that it is possible to achieve significant energy savings
without a dramatic loss in model performance.

Parameter-Efficient Fine-Tuning

Beyond model compression, another critical research direction is parameter-efficient
fine-tuning (PEFT) [WCJ+25]. While compression strategies primarily aim to improve
inference-time efficiency, PEFT is designed to enable cost-effective adaptation and training.
Instead of updating all parameters, PEFT modifies only a small, carefully chosen subset of
the pretrained model’s weights. This approach significantly reduces memory, computation,
and energy demands, while still achieving performance that is often close to, or even
matches, that of full fine-tuning [WCJ+25].
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Figure 2.4: Knowledge distillation process. This figure shows how the student model is
trained by minimizing a combined loss that equally balances KL divergence with the
teachers’ softened outputs and cross-entropy with ground truth labels ([PSUL25],Fig. 11).

A widely adopted variant of PEFT is Low-Rank Adaptation (LoRA) [HSW+22]. LoRA
operates on the premise that the change in weights during model adaptation has a
low “intrinsic rank”. Instead of updating the full weight matrix W , LoRA freezes the
pre-trained weights and injects trainable rank decomposition matrices A and B into each
layer, such that the weight update is represented as ∆W = BA. Since the dimensions of
A and B are much smaller than W , the number of trainable parameters can be reduced
by up to 10,000 times, drastically lowering GPU memory requirements.

Building on this, Quantized LoRA (QLoRA) [DPHZ23] further improves efficiency by
backpropagating gradients through a frozen, 4-bit quantized pre-trained model into Low-
Rank Adapters. This allows for the fine-tuning of massive models on a single consumer
GPU, making high-performance multimodal adaptation accessible in resource-constrained
environments.

2.4.2 Measuring Energy Efficiency
To quantify the sustainability of AI models, precise metrics are required beyond standard
accuracy scores. “Green AI” research emphasizes the measurement of the computational
cost required to achieve a result. Key metrics include:

• Energy Consumption (Joules/kWh): The total electrical energy drawn by the
hardware (GPU, CPU, memory) during a training run or inference batch. This is
often measured using hardware-specific interfaces like the NVML.
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• Inference Latency: The time taken for the model to process a single input and
generate a prediction. Lower latency is critical for real-time insurance workflows.

• Throughput: The number of samples processed per second. High throughput is
essential for batch processing large volumes of claims.

• Carbon Footprint (CO2eq): The estimated carbon emissions resulting from the
energy consumption, calculated based on the carbon intensity of the local power
grid.

By optimizing these metrics alongside predictive performance (F1-score, Accuracy),
researchers can develop models that are not only intelligent but also environmentally and
economically sustainable.

2.5 Data-Centric Optimization in Multimodal Systems
Multimodal fusion refers to the process of combining data from different sources, each
contributing its own unique information to help create a richer, more comprehensive
understanding of a problem. There are two main approaches to this: early fusion, where
raw features from different modalities (like text, images, and audio) are combined before
any modeling is performed, and late fusion, where separate models for each modality
are built first and then their outputs are merged at the final stage. The central point
is that each modality can add unique, task-relevant information, but the value of that
information depends critically on its quality, alignment with other modalities, and how it
is integrated [LT24].

The performance of a multimodal system is therefore limited by the data it receives.
High-quality, well-annotated, and diverse datasets are essential for reliable performance:
if one modality is noisy, biased, or poorly aligned with the others, the entire model can
inherit those flaws. This exemplifies the “garbage in, garbage out” principle within the
context of multimodal learning. In practical terms, noisy textual descriptions, poorly
framed photographs, or systematic omissions in annotation (for example, missing minor
scratches or inconsistent severity labels) can bias the model, reduce generalization to new
conditions, and increase costly operational failures. Consequently, careful attention to
dataset curation and annotation protocols is as important as architectural choices when
building robust multimodal systems.

2.5.1 Dataset Limitations and Generalization
One of the biggest challenges in fields like vehicle damage assessment is the scarcity
of large, balanced, and well-annotated datasets. Public and proprietary collections
frequently overrepresent common, visually salient damage types (scratches, small dents)
and underrepresent rare but operationally important cases such as frame deformation,
subframe fractures, or engine-bay damage. This class imbalance leads models to prioritize
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majority classes during training and to underperform on examples that, although rare,
can have disproportionate cost implications for insurers.

For example, in the domain of vehicle damage detection, most datasets may only contain
a handful of examples of more serious damage like frame cracks or engine component
failures, leading the model to underperform when tasked with identifying those types of
issues in the real world.

Generalization challenges are not unique to vehicle damage models. Wang et al.
[WMMX17] demonstrate that limited or biased multimodal training data can cause
models to overfit to spurious attributes (e.g., specific speaker traits) and propose a
method to boost generalization across domains.

Crucially, in multimodal systems, diverse and well-rounded datasets are needed to ensure
that models can generalize well to new, unseen data. Otherwise, they will become overly
proficient at memorizing the training set and fail to perform when faced with real-world
complexity, a classic case of overfitting.

2.5.2 Why Quality Beats Quantity

The conventional belief that “more data is always better” is being revised in light of
recent evidence favoring data quality. Carefully curated datasets, even when smaller, can
produce superior downstream performance and markedly greater data efficiency than
massive, noisy corpora.

Xu et al. [XSW+25] argue that simply having a vast amount of data from web crawls is
not enough for optimal multimodal model performance. More important is adopting a
data-centric approach that centers on curation, cleaning, and focusing on data that are
truly useful for the model.

2.5.3 Cleaning and Consistent Annotation

Data cleaning and consistent annotation are the foundation of any data-centric effort.
Practical cleaning steps include deduplication, outlier detection, label normalization, and
explicit alignment of multimodal pairs. Multimodal systems benefit disproportionately
from explicit alignment checks. Ensuring that the textual description refers to the visual
content improves signal quality for joint learning [GLX+23].

Investing in cleaning and annotation not only leads to better model performance, but
also makes the training process more efficient. Well-annotated, high-quality data can
significantly reduce the time and computational resources required for model training
and optimization, which in turn lowers the overall costs. Thus, improving data quality
pays off at every stage of the entire AI development pipeline [GLX+23].

This chapter has presented the essential background on multimodal learning, recent
developments in VLM, techniques used in automated vehicle damage assessment, and
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strategies for improving efficiency and data quality. These elements are critical to
understanding the methods and innovations proposed in the remainder of this thesis.
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CHAPTER 3
Related Work

This chapter provides an overview of related work in the field of energy efficiency
optimization within multimodal learning systems, specifically in the context of automated
vehicle damage evaluation. The chapter begins by discussing strategies aimed at reducing
the computational cost of ML models, such as model compression, PEFT, and energy
measurement techniques.

Next, classical computer vision approaches and multimodal learning approaches in the
context of automated vehicle damage evaluation are explored, highlighting key studies that
incorporate image recognition to assess vehicle condition. Finally, work that intersects
energy optimization and multimodal systems is reviewed, identifying common strategies
and challenges.

3.1 Energy-Efficient Machine Learning
The rapid growth of deep learning has delivered remarkable breakthroughs, from conquer-
ing the game of Go to driving top-tier results in image recognition, speech processing,
and language translation. However, this leap forward has come at a significant increase in
the consumption of computing power. This trend is becoming economically, technically,
and environmentally unsustainable [TGLM20], motivating a broad research effort to
retain or recover performance while lowering compute cost. Work in this area spans
algorithmic compression, compact adaptation, dynamic compute, and better measurement
methodologies, each addressing different parts of the training and inference lifecycle.

Beyond model compression, recent work has focused on optimizing the training process
itself. You et al. introduced Zeus [YCC23], an optimization framework that automatically
tunes training hyperparameters to minimize energy consumption rather than just training
time. This work demonstrates that energy-aware training schedules can significantly
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reduce the carbon footprint of deep learning without requiring changes to the model
architecture.

3.1.1 Model Compression Techniques
Recent research has extended classical compression methods to the multimodal and VLMs
setting, where the joint representation of text and images introduces new interaction
patterns and hardware considerations. For instance, CASP, introduced by Gholami et
al. [GACZ25], exploits attention sparsity in large multimodal architectures by combining
low-rank decompositions of the query and key weight matrices with optimal per-layer
bit-allocation quantization. This approach achieves state-of-the-art performance in
ultra-low-bit regimes across both image-language and video-language benchmarks.

Paula et al. [PSUL25] provide a comparative study across pruning, quantization, and
distillation, showing that the combination of these methods can reduce training and
inference costs by up to an order of magnitude while preserving competitive performance.

3.1.2 Parameter-Efficient Fine-Tuning with Low-Rank Adaptation and
Quantized Low-Rank Adaptation

A widely adopted variant of PEFT is LoRA [HSW+22], introduced by Hu et al. LoRA
takes advantage of the insight that weight updates in neural networks often lie in a
low-dimensional subspace. Instead of learning full-rank updates for weight matrices,
LoRA approximates these updates by decomposing them into the product of two low-rank
matrices. During fine-tuning, only these small matrices are trained while the primary
weights remain unchanged, resulting in substantial reductions in trainable parameters
without sacrificing downstream performance.

Based on the principles of LoRA, QLoRA [DPHZ23] presents a further improvement in
PEFT by integrating model quantization into the LoRA framework. QLoRA keeps the
model frozen while quantizing it to 4-bit precision. This hybrid quantization strategy
dramatically reduces both memory and computational demands, allowing fine-tuning
of massive models (up to 65 billion parameters) on a single GPU with only 48GB of
Video Random Access Memory (VRAM). By merging the low-rank adaptation of LoRA
with aggressive yet effective quantization techniques, QLoRA makes the fine-tuning of
ultra-large LLMs more accessible and efficient [DPHZ23].

3.1.3 Energy Measurement and Benchmarking
At the hardware level, energy consumption can be precisely monitored using NVML [NVI25].
NVML is a C-based API that provides direct access to low-level management and monitor-
ing functionalities of NVIDIA GPUs. It enables developers to retrieve real-time metrics
such as power draw, temperature, memory usage, and utilization. By integrating NVML
into training and inference pipelines, researchers can collect accurate measurements of
GPU energy consumption across different stages of model execution. These data can
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then be aggregated to compute total power usage and benchmark the energy efficiency of
various model architectures or optimization techniques. Unlike estimation-based tools,
NVML reports actual power data from on-board GPU sensors, ensuring high-fidelity
energy profiling for AI workloads.

3.2 Classical Computer Vision Approaches
Early and recent studies on vehicle damage often start with single-image approaches
such as classification, detection, or segmentation. One of the most widely used resources
is the CarDD dataset [WLW23], which contains 4,000 high-resolution images and more
than 9,000 annotated damage instances of six types, such as scratches, dents, and cracks.
CarDD offers annotations for segmentation, detection, and classification, making it a
versatile resource for comparison and evaluation of methods. However, the dataset also
exposes the core limitations of single-image analysis. For example, small, subtle, or
partially obscured damage types often elude even high-performing models, especially when
lighting conditions, occlusions, or surface reflections degrade visual clarity [WLW23].

A study by Perez et al. demonstrates that classical single-image damage detection methods
can be significantly enhanced by ensemble learning [PZCGPM+24]. They introduce an
ensemble of ten YOLOv5-based detectors, each trained with varying configurations, and
apply confidence threshold optimization and box fusion through a voting system. This
approach markedly improves detection precision and recall while dramatically reducing
false positives.

However, even the best classical models are ultimately constrained by their lack of
contextual understanding and temporal coherence. More recent multimodal or sequential
approaches aim to address these limitations.

3.3 Multimodal Learning for Vehicle Damage Evaluation
Hasan et al. propose GroundingCarDD [HNO+24], a text-guided multimodal phrase-
grounding framework specifically for car damage detection and localization. Their
approach focuses on the fusion of visual features with textual phrases (e.g., “front bumper
scratch”, “left rear dent”) using a context-aware attention mechanism that strengthens
correspondences between language tokens and localized image regions. This targeted
fusion enables the model to separate subtle defects from confounding visual artifacts
such as reflections, shadows, or background clutter. Evaluation on a mix of curated and
public datasets demonstrates meaningful gains over competitive baselines [HNO+24].

Asgarian et al. present AutoFraudNet [ASJP23], a multimodal reasoning framework
for detecting fraudulent auto-insurance claims. The model integrates multiple input
sources, through a cascaded slow-fusion strategy employing BLOCK-Tucker fusion
blocks [BCTC19], which balance model capacity and overfitting control. Using pre-
extracted image and text features, AutoFraudNet demonstrates that multimodal fusion
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produces superior fraud detection performance, achieving over a 3% absolute improvement
in PR-AUC compared to unimodal baselines. Although optimized for fraud detection,
the framework also illustrates how outputs from image-based damage localization and
classification models can be effectively incorporated into downstream multimodal claim
validation tasks [ASJP23].

Yang et al. propose the AIML [YCD+23] framework for auto-insurance fraud detection,
which explicitly integrates computer vision, natural language processing, and knowledge-
based features. The approach draws on visual evidence, such as detected damaged
parts and Optical Character Recognition (OCR)-extracted information from invoices or
license plates, transforming these inputs into structured representations. These are then
fused with textual claim descriptions and tabular claim fields to capture inconsistencies
indicative of fraudulent activity. Evaluation in real-world insurance claim collections
demonstrates that incorporating multimodal inputs yields consistent improvements over
models trained exclusively on structured or tabular data [YCD+23].

In the broader context of industrial inspection, Gu et al. proposed AnomalyGPT [GZZ+23],
a method that adapts Large VLMs for industrial anomaly detection. By utilizing a
lightweight visual-textual feature matching mechanism, their approach allows the model
to detect and describe surface defects (such as scratches and dents) with very few training
examples. Although applied to general industrial manufacturing, the core problem of
identifying surface irregularities is directly analogous to vehicle damage assessment,
suggesting that similar few-shot VLM techniques could be effective in the insurance
domain.

3.4 Energy Optimization and Multimodal Systems
Recent work has begun to address modality-sensitive efficiency considerations in VLMs.
Li et al. introduce Modality-Balanced Quantization (MBQ) [LHN+25], a PTQ technique
designed for large VLMs. The authors conclude that visual and textual tokens exhibit
differing sensitivities to quantization, which can degrade performance when treated
uniformly. To address this, MBQ applies modality-specific calibration strategies to balance
quantization error between modalities and reduce reconstruction loss. The experimental
results show that MBQ consistently outperforms previous PTQ methods, improving task
precision by approximately 4.4% to 11.6% in various quantization settings [LHN+25].

Patnaik et al. provide a systematic survey of small VLMs (sVLMs), that is, VLM
architectures optimized for deployment under computational constraints. The review
categorizes approaches into transformer-based, hybrid, and lightweight designs, and
examines efficiency techniques such as knowledge distillation, modality pre-fusion, and
optimized attention mechanisms. The survey highlights the trade-offs inherent in compact
architectures, particularly between accuracy, computational cost, memory footprint, and
latency. In addition, it highlights key challenges for sVLMs, including limited general-
ization, increased sensitivity to bias, reduced robustness, and increased vulnerability to
domain shifts [PNA+25].
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3.5 Summary
Research that unifies multimodal design with energy optimization is still early but
expanding. Shared ideas include modality-aware quantization, module-level compression,
staged adaptation that uses parameter-efficient tuning to find task-relevant capacity
before distilling models for deployment, and data curation that removes redundant or
noisy samples. Work that blends these techniques often reports the strongest real-world
gains, showing that small, targeted architectural or algorithmic adjustments can sharply
improve energy per prediction with little loss in accuracy.

Overall, recent progress in multimodal grounding and fusion shows the value of combining
text and image signals for tasks such as damage localization, fraud detection, and claim
validation. At the same time, efficiency research on quantization, parameter-efficient
tuning, distillation, and compact vision-language model design offers practical ways to
run these systems under strict compute and energy limits. Key gaps persist, including
the lack of unified energy-performance models for multimodal compression, inconsistent
evaluation practices, and limited curated datasets for vehicle damage analysis. Although
AnomalyGPT advances defect detection, no prior work combines QLoRA-based fine-
tuning with energy-aware data curation and compression for the insurance domain. This
thesis fills that gap by creating a curated multimodal benchmark, applying staged PEFT
and modality-aware compression, standardizing energy measurements, and modeling
energy vs. accuracy trade-offs.
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CHAPTER 4
Methodology

This chapter provides an outline of the experimental methodology used to investigate
the potential of VLMs for automated vehicle damage assessment under data and energy
constraints. First, the data collection process is described, which involves gathering data
from multiple public sources and a subsequent pre-processing pipeline designed to ensure
quality and consistency.

Next, the models selected for benchmarking, namely LLaVA, Qwen-VL, Bunny, Phi-3,
and SmolVLM, are detailed, and the justification for their inclusion is explained. Detailed
descriptions of these models, including their architectural differences and unique features,
are provided in Chapter 2. In this chapter, the focus is on how these models were
employed in the benchmarking and fine-tuning pipeline.

The benchmarking strategy used to evaluate the model performance is described, including
the metrics chosen and the integration of NVIDIA NVML for energy tracking. The
fine-tuning procedure applied to the top-performing model is then outlined, focusing on
domain adaptation techniques and training optimizations.

Finally, the post-fine-tuning evaluation strategy is presented, in which the comparison of
the fine-tuned model against its baseline counterpart is outlined.

4.1 Data
Datasets were identified and acquired from two widely recognized platforms that serve as
central repositories for ML and computer vision research:

Kaggle: A platform well known for hosting ML competitions, but also providing a
substantial dataset repository contributed by researchers and practitioners. Kaggle
datasets are frequently used in applied research, including tasks such as object detection,
classification, and anomaly detection. In the context of this study, datasets focused on
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vehicle damage detection and severity classification were particularly relevant, as they
provide annotated images that support model benchmarking and evaluation[Kag25].

Roboflow: A platform specializing in the preparation, annotation, and hosting of
datasets for computer vision applications. Roboflow allows researchers to preprocess,
augment, and share image datasets through an intuitive interface. The curated automotive
datasets available on this platform are specifically designed to support detection and
classification tasks, making them highly applicable to this research[Rob25].

By integrating datasets from these two sources, diversity and reproducibility are ensured.

4.1.1 Datasets

A set of publicly available datasets was selected that together provide broad coverage
of vehicle imagery and a variety of damage types. For each dataset below, its origin,
content, typical annotation format, and how it was used in this study are summarized.

Car Connection Picture Dataset

The Car Connection Picture [Pro17] dataset consists of over 60,000 images of cars sourced
from Kaggle. The dataset includes a diverse collection of car images from various models
and types. The images feature cars in good condition and in various environments, such
as urban, highway, and parking lots. Images are provided in JPEG format at a range of
resolutions. In this project, images from this dataset were used primarily to populate
the category “No damage”: their visual variety assists models in learning non-damage
appearance modes and reduces false positives during detection and classification.

Car Damage Assessment

The Car Damage Assessment [Man21] dataset, also from Kaggle, comprises 1512 images
depicting vehicles with different degrees of damage. It covers a range of car models and
types, categorizing damage into specific classes such as:

• Unknown
• Door dent
• Bumper scratch
• Door scratch
• Glass shatter

The images are supplied in JPEG format and are available in a range of resolutions.
The corresponding category information is detailed in the accompanying CSV file. This
dataset was used as a primary source of small-to-moderate severity damage examples.
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Car Damage Images Computer Vision Dataset

Obtained from Roboflow, the Car Damage Images Computer Vision [Dam23] dataset
comprises 300 images illustrating various damage scenarios. It encompasses diverse
vehicle models and damage types, such as:

• Broken glass
• Dent
• Misaligned part
• Missing part
• Paint damage
• Scratch
• Front-end damage
• Rear-end damage
• Side-impact damage

Provided as JPEG files with varying resolutions, this dataset includes category labels in
a CSV file. This dataset provided fine-grained examples for several damage modes that
are underrepresented in larger repositories.

Car Damage Detection Computer Vision Model

Another Roboflow-sourced collection, the Car Damage Detection Computer Vision
Model [CAP23] dataset, contributes 3226 images showing cars with varying damage
levels. It spans multiple car models and damage categories, notably:

• Bonnet
• Bumper
• Dickey
• Door
• Fender
• Light
• Windshield

The images are in JPEG format across different resolutions, with metadata and labels
provided in a CSV file.

CAR DAMAGES Computer Vision Dataset

The CAR DAMAGES Computer Vision [rod22] dataset, also from Roboflow, offers 839
images highlighting different damage severities. It includes a variety of car types and
specific damage classifications like:

• Crack and hole
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• Medium deformation
• Severe deformation
• Severe scratch
• Slight deformation
• Slight scratch
• Windshield damage

These JPEG images come in mixed resolutions, accompanied by a CSV file containing
the necessary category information.

Car-Dent-Detection2 Computer Vision Dataset

The Car-Dent-Detection2 Computer Vision [Saw24] dataset consists of 3746 images of
cars with varying levels of damage sourced from Roboflow. The images feature cars from
various models, types, and damage categories, including:

• Front Windscreen Damage
• Headlight Damage
• Major Rear Bumper Dent
• Rear Windscreen Damage
• Running Board Dent
• Side Mirror Damage
• Signal Light Damage
• Taillight Damage
• Bonnet Dent
• Door Outer Dent
• Fender Dent
• Front Bumper Dent
• Medium Bodypanel Dent
• Pillar Dent
• Quarter Panel Dent
• Rear Bumper Dent
• Roof Dent

The images are supplied in JPEG format and are available in a range of resolutions. The
corresponding category information is detailed in the accompanying CSV file.

Car-Defect-2 Computer Vision Dataset

With 3356 images, the Car-Defect-2 Computer Vision [R22] dataset from Roboflow
provides a substantial collection of damaged vehicle imagery. It covers diverse car models
and specific defect types such as:

• Front Windscreen Damage
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• Headlight Damage
• Rear Windscreen Damage
• Running Board Dent
• Side Mirror Damage
• Signal Light Damage
• Taillight Damage
• Bonnet Dent
• Door Outer Dent
• Fender Dent
• Dent
• Medium Bodypanel Dent
• Pillar Dent
• Quarter Panel Dent
• Rear Bumper Dent
• Roof Dent

Images are provided in JPEG format with mixed resolutions, and the corresponding
annotations are detailed in a CSV file.

Car-Dects-New Computer Vision Dataset

The Car-Dects-New Computer Vision [ag21] dataset, another Roboflow contribution,
comprises 3756 images depicting various vehicle damages. It features a wide range of car
types and damage categories, including:

• Front Windscreen Damage
• Headlight Damage
• Major Rear Bumper Dent
• Rear Windscreen Damage
• Running Board Dent
• Side Mirror Damage
• Signal Light Damage
• Taillight Damage
• Bonnet Dent
• Door Outer Dent
• Fender Dent
• Front Bumper Dent
• Medium Bodypanel Dent
• Pillar Dent
• Quarter Panel Dent
• Rear Bumper Dent
• Roof Dent
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The images are supplied in JPEG format and are available in a range of resolutions. The
corresponding category information is detailed in the accompanying CSV file.

CarDD

Sourced from Google Drive, the CarDD [WLW23] dataset contains 4000 images illustrating
different levels of vehicle damage. It encompasses a variety of car models and damage
types, such as:

• Tire flat
• Lamp broken
• Glass shatter
• Scratch
• Crack
• Dent

These images are provided as JPEGs in various resolutions, with detailed category
information available in the accompanying CSV file.

4.2 Data Preprocessing and Quality Control
Vehicle damage imagery varies substantially in quality due to factors such as lighting
conditions, image resolution, motion blur, and the capabilities of user devices. Careful
preprocessing is therefore essential to produce a reliable training corpus and to avoid
expending computational resources on low-utility samples. By filtering out low-quality
images before training, the model is prevented from unnecessarily expending GPU
cycles attempting to learn features from uninformative samples, effectively increasing the
“information density” per Joule of energy consumed. The following subsections describe
the automated filtering and quality-control steps applied to produce the curated dataset
used in the experiments.

4.2.1 Filtering Procedures
The following preprocessing steps were implemented to create the cleaned corpus:

Blur Detection - Images with insufficient sharpness were discarded. A variance of the
Laplacian operator [Hua25] was used as a sharpness score.

The Laplacian operator is a second-order derivative operator commonly used in image
processing to highlight regions of rapid intensity change, such as edges. Mathematically,
the Laplacian of a two-dimensional image function f(x, y) is defined as the sum of the
second partial derivatives with respect to spatial coordinates, as shown in Equation (4.1):

∇2f = ∂2f

∂x2 + ∂2f

∂y2 (4.1)
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In OpenCV, the discrete Laplacian operator is implemented using convolution with
kernels approximating these second derivatives. When applied to a grayscale image I,
the Laplacian highlights areas where the intensity changes sharply. This response is often
used for blur detection by computing the variance of the Laplacian response, defined in
Equation (4.2):

Blur Score = Var
(︂
∇2I

)︂
(4.2)

A high variance indicates a sharp image with many edges, whereas a low variance suggests
blurriness. Thus, the variance of the Laplacian serves as an effective quantitative measure
of image sharpness and is commonly computed in OpenCV as in Equation (4.3):

cv2.Laplacian(I,cv2.CV_64F).var() (4.3)

where the function computes the Laplacian of the image I and then the variance of the
result [Hua25]. This method helps to ensure that important structural details, such as
dents, cracks, or scratches in vehicle damage images, remain visible.

Exposure Control - To ensure high-quality data, images with extreme exposure levels
were excluded. These issues can hinder the performance of computer vision models by
affecting the quality of feature extraction [EYEW22]. For exposure checks, each image
was converted to grayscale and the mean intensity was computed. Images with a mean
intensity below 30 were flagged as underexposed and those above 225 as overexposed.
These numeric thresholds were validated on a curated subset to balance the removal of
unusable images against retaining naturally dark or bright but informative examples (for
instance, nighttime images where damage is still visible).

Near-Duplicate Removal - To avoid redundancy and minimize computational waste,
perceptual hashing was applied to identify visually similar images. The Average Hash
(aHash) [FJZL17] algorithm was used, which captures low-frequency image structure and
is efficient for large corpora. The aHash computation proceeds as follows:

1. Resize the input image to 8 × 8 using bicubic interpolation, ignoring the original
aspect ratio.

2. Convert the resized color image to grayscale and compute the mean pixel value M .

3. Binarize each pixel value Ai (where i = 1, . . . , 64) using the following Equation (4.4):

hi =
{︄
0, if A(i) ≤ M,

1, otherwise.
(4.4)

4. Combine the binary values hi to form a 64-bit hash code.
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To measure the similarity between two images with hashes, the Hamming distance [Ham50]
is computed. The Hamming distance between two strings of equal length is the number
of positions in which the corresponding symbols are different [Ham50]. A small Hamming
distance indicates high similarity between images. In the pipeline, pairs of images with
Hamming distance less than two were considered near-duplicates; in such cases the earliest
instance (sorted by acquisition or ingestion time) was retained and subsequent duplicates
were removed.

Annotation Consistency Checks - Automated checks were used to validate annotation
files and remove invalid or empty annotations. Annotation files labeled as Other, or
those that were empty or contained only whitespace, were identified and removed together
with their corresponding images. The cleaning pipeline also checked CSV manifest fields
for missing bounding boxes, malformed coordinates, or inconsistent class labels and
flagged these entries for manual review. These systematic checks ensured that only
samples with valid, non-empty captions and correct annotation formats were retained,
reducing downstream noise without requiring wholesale manual re-labeling.

After preprocessing, the size of the dataset was reduced from 24,800 to 18,200 high-
quality samples. Examples of annotated images can be seen in Figure 4.1. The adopted
filtering approach ensures a trade-off between dataset scale and reliability. Both the raw
and preprocessed datasets are retained and versioned so that experiments can compare
robustness and performance when models are trained on noisy versus curated data.

Figure 4.1: Examples of the annotated images retained after the data filtering process.

4.3 Model Selection
Given the focus of this thesis on benchmarking fine-tuning strategies under efficiency
constraints, five state-of-the-art VLMs were selected that represent a broad range of
trade-offs among parameter count, architectural design, and intended deployment profile.
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The selection intentionally spans large instruction-tuned models with strong multimodal
alignment, family releases that emphasize high-quality pretraining data and grounding,
and compact architectures built for low-resource inference.

LLaVA-v1.5-7B: Known for its instruction-following capabilities and strong alignment
between vision and language modalities. LLaVA has been shown to reach the GPT-4
level in multimodal tasks [LLLL24]. Table 4.1 provides a technical overview of the
LLaVA-1.5-7B model.

Table 4.1: LLaVA-1.5-7B Model Specifications

Attribute Details
Model Name LLaVA-1.5-7B
Backbone Vicuna-7B (fine-tuned from LLaMA)
Vision Encoder Contrastive Language-Image Pre-training (CLIP)-based

(e.g., Vision Transformer (ViT)-L-14)
Number of Parameters Approximately 7 billion
Training Datasets 558K filtered image-text pairs from LAION/CC/SBU

captioned by BLIP; 158K GPT-generated multimodal
instruction-following data; 450K academic-task-oriented
VQA mixture; 40K ShareGPT data.

Training Framework Fine-tuned using multimodal instruction-following data

Qwen-VL-7B: A versatile model developed by Alibaba that incorporates a structured
training pipeline across multiple multimodal datasets. It has achieved leading results in
a range of visual understanding benchmarks [BBC+23]. Table 4.2 provides a technical
overview of the Qwen2.5-VL-7B-Instruct model.

Bunny-Llama-8B: A lightweight VLM family designed for efficiency. Bunny employs
smaller parameter counts with optimized encoders, making it a strong candidate for
resource-constrained environments where energy and latency matter [HLW+24]. Table 4.3
provides a technical overview of the Bunny-v1.1-Llama-3-8B-V model.

Phi-3.5-Vision-Instruct: A lightweight but highly capable VLM from Microsoft that
fuses a CLIP-ViT-L/14 vision encoder with the Phi-3 Mini language backbone. It supports
very long context (128K tokens) for reasoning-heavy image understanding tasks [AJA+24].
Table 4.4 provides a technical overview of the Phi-3.5-Vision-Instruct model.

SmolVLM-Instruct: A highly efficient multimodal model from Hugging Face that
combines a shape-optimized SigLIP vision encoder with the SmolLM 2 language back-
bone. It offers strong image understanding capabilities while maintaining a compact
size [MZF+25]. Table 4.5 provides a technical overview of the SmolVLM-Instruct model.

All models were initialized from publicly available pre-trained checkpoints to ensure
comparability and reproducibility. Implementations and training were performed in
PyTorch, and when official or community checkpoints differed in tokenizer, image pre-
processing, or input template conventions these elements were standardized as part
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Table 4.2: Qwen2.5-VL-7B-Instruct Model Specifications

Attribute Details
Model Name Qwen2.5-VL-7B-Instruct
Backbone Qwen2.5 (fine-tuned from a variant of Qwen model family)
Vision Encoder ViT
Number of Parameters Approximately 7 billion
Training Datasets 1.5T tokens: image captions, visual knowledge, OCR data,

2T tokens: interleaved image-text data, VQA, multimodal
math, agent tasks, video understanding, pure text, 0.6T to-
kens: long videos, long agent trajectories, long documents,
>10,000 object categories: grounding data (bounding boxes
and points, public + synthetic), 1M charts: synthesized using
matplotlib, seaborn, plotly, 6M tables: real-world tabular
data processed with end-to-end table recognition, Multilin-
gual OCR: French, German, Italian, Spanish, Portuguese,
Arabic, Russian, Japanese, Korean, Vietnamese (synthetic +
real-world images)

Training Framework Supervised fine-tuning with over 1 million samples and mul-
tistage reinforcement learning

Table 4.3: Bunny-v1.1-Llama-3-8B-V Model Specifications

Attribute Details
Model Name Bunny-v1.1-Llama-3-8B-V
Backbone LLaMA (3B parameters) fine-tuned for multimodal tasks
Vision Encoder CLIP-based vision encoder (ViT-L/14)
Number of Parameters Approximately 8 billion
Training Datasets 2M image-text pairs (LAION-2B), 1.2M fine-tuned instruc-

tion data, 150K image-question pairs
Training Framework Fine-tuned using high-quality data and dataset condensation

techniques

Table 4.4: Phi-3.5-Vision-Instruct Model Specifications

Attribute Details
Model Name Microsoft Phi-3.5-Vision-Instruct
Backbone Phi-3 Mini and Llama-2
Vision Encoder CLIP ViT-L/14
Number of Parameters 4.2 billion
Training Dataset Approximately 500 B tokens of interleaved image-text doc-

uments, FLD-5B image-text pairs, synthetic OCR/PDF,
chart/table comprehension datasets, text-only data

Training Framework Two-phase training: supervised fine-tuning + direct prefer-
ence optimization
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Table 4.5: SmolVLM-Instruct Model Specifications

Attribute Details
Model Name SmolVLM-Instruct
Backbone SmolLM 2
Vision Encoder SigLIP, shape-optimized, with 384×384 patches
Number of Parameters 1.7 billion
Training Dataset Approximately 839 million tokens and 1.9 million images

from The Cauldron and Docmatix datasets
Training Framework Supervised fine-tuning on multimodal instruction data

of the experimental controls. The principal rationale for using pre-trained models is
pragmatic and methodological: pre-training captures large amounts of world knowledge
and multimodal structure, which dramatically reduces the data and compute required
for effective domain adaptation. This allows the thesis to focus on fine-tuning strategies,
data curation, and energy-aware interventions rather than end-to-end pretraining.

4.4 Benchmarking Strategy

To evaluate models comprehensively, standard predictive performance metrics are com-
bined with sustainability-oriented indicators of computational cost. This dual approach
enables a rigorous assessment of both the utility of each model and its environmental
footprint under realistic training and inference conditions.

4.4.1 Predictive Performance Metrics

Model predictions are evaluated using four primary metrics derived from the confusion
matrix counts of true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN).

Accuracy

Accuracy reflects the overall proportion of correctly classified instances. It is defined in
Equation 4.5:

Accuracy = TP + TN

TP + TN + FP + FN
(4.5)

Because accuracy can be misleading for imbalanced class distributions, Precision, Recall,
and the F1 score are reported to give a clearer picture of positive-class behavior [THKG20].
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Precision

Precision measures the fraction of positive predictions that are actually correct. It is
defined in Equation 4.6:

Precision = TP

TP + FP
(4.6)

Recall

Recall measures the proportion of actual positive instances that are correctly identified.
It is defined in Equation 4.7:

Recall = TP

TP + FN
(4.7)

F1 score

The F1 score represents the harmonic mean of precision and recall. It is defined in
Equation 4.8:

F1 = 2 · Precision · Recall
Precision + Recall (4.8)

Both macro-averaged (unweighted mean across classes) and weighted-averaged (weighted
by class support) variants of these metrics are reported, and per-class results are shown.

4.4.2 Resource-Oriented Metrics

To complement accuracy-based evaluation, sustainability metrics are incorporated to
quantify computational efficiency.

Energy consumption of the training process was measured using the NVML [NVI25],
which provides low-level access to GPU power telemetry. NVML was used to log per-
GPU energy usage throughout each training run, enabling transparent reporting of the
computational footprint of every optimization step.

The system contained three GPUs in total: two remained idle for the entire duration of
the experiments, while one GPU was actively used for training. The analysis therefore
focuses on the energy consumption of the active GPU, while still recording the negligible
baseline energy usage of the idle devices for completeness.

The combined use of predictive and resource-oriented metrics provides a comprehensive
picture of each model’s accuracy, robustness, latency, and environmental footprint.
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4.5 Fine-tuning
This section describes the methodology used to fine-tune a VLM for the vehicle damage
task using Unsloth runtime patches and parameter-efficient adapters (LoRA). The Unsloth
library was selected because it provides optimized Triton kernels that significantly reduce
VRAM usage (by up to 30%) and accelerate training throughput (by up to 2x) compared
to standard implementations [HHt23]. This choice is directly aligned with the thesis
objective of maximizing energy efficiency during the training phase.

It documents the intended inputs and outputs, the high-level flow of the fine-tuning script,
the conditional steps that are taken depending on flags, and the checks and artifacts
that ensure reproducibility. Experimental specifics (exact hyperparameters, split sizes,
hardware, and full evaluation runs) are reserved for Chapter 5.

4.5.1 Fine-tuning workflow
Upon invocation, the script applies the Unsloth runtime patches and establishes default
environment variables needed for the training process. It then parses all command-
line arguments governing dataset configuration, I/O options, LoRA hyperparameters,
training settings, and optional energy-tracking behavior. The dataset reader performs
systematic validation of the CSV files. It resolves absolute image paths using the provided
-image-root or the directory containing the CSV file, verifies that required columns
are present, optionally truncates the dataset if limits are specified, and constructs a
HuggingFace Dataset object. Rows referencing missing images trigger an immediate
FileNotFoundError so that resource-intensive training runs do not begin under invalid
conditions.

The data is transformed into the chat-style message format expected by the tokenizer
and the data collator. Each user message embeds the corresponding image and, where
applicable, auxiliary prompt text, while the assistant message contains the target answer.
The chat template used for formatting is installed directly on the tokenizer and supplied
to the UnslothVisionDataCollator, ensuring that tokenization and image-token
placement remain consistent between training and inference.

Model initialization proceeds via FastVisionModel.from_pretrained() using Un-
sloth’s optimized loader. When the load_in_4bit option is enabled, the default model
identifier points to a quantized Unsloth-optimized checkpoint. LoRA adapters are at-
tached using FastVisionModel.get_peft_model() in accordance with the user-
specified configuration, including rank, scaling, and dropout parameters. The resulting
model is placed into training mode throughFastVisionModel.for_training() so
that all Unsloth-specific optimizations are activated.

An UnslothVisionDataCollator is instantiated to perform all image transforma-
tions and batching routines. It enforces template consistency and controls vision-token
placement. Training is then executed using trl.SFTTrainer, which receives all hyper-
parameters defined at the command line, including batch size, gradient accumulation
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steps, learning rate schedule, weight decay, warm-up configuration, precision mode, and
the cadence of logging and checkpointing. Evaluation can be triggered at fixed steps or,
alternatively, derived from a user-supplied number of evaluations per epoch.

Once enabled, GPU-energy usage is measured by an EnergyMonitor wrapper around
NVML. The monitor records the cumulative energy counter for each tracked GPU exactly
twice, once before inference begins and once after it ends, and reports the aggregate
energy expenditure (plus any NVML warnings) at the conclusion of the run. As illustrated
in Figure 4.2, energy monitoring operates alongside the broader data-preparation and
model-loading stages of the training pipeline.

Figure 4.2: Training pipeline: data preparation, model loading, and training with
continuous energy monitoring.

The training loop, executed through trainer.train(), is enclosed in a try/finally
block to guarantee that energy monitoring is properly terminated and temporary resources
are released, even in the event of user interruption or runtime errors. Once training con-
cludes, the trainer state and metrics are saved. The LoRA adapter weights and tokenizer
are written using model.save_pretrained(output_dir) and
tokenizer.save_pretrained(output_dir). When merged output is requested,
the model is converted to inference mode using
FastVisionModel.for_inference(model) and saved through
model.save_pretrained_merged() to produce a fully merged 16-bit checkpoint.
The post-training workflow, including optional merging and energy logging, is summarized
in Figure 4.3.

Figure 4.3: Post-training pipeline: adapter save point, optional 16-bit merge, metrics
saving, and energy logging.
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4.6 Post-fine-tuning evaluation
Following the fine-tuning process described in Section 4.5, the resulting models were
subjected to the same rigorous evaluation framework established in Section 4.4. This
evaluation phase was designed to assess the marginal performance gains and resource
utilization differences compared to their original, pre-trained counterparts.

The evaluation primarily focused on two comparative analyses:

1. Performance Comparison: The fine-tuned models’ Precision, Recall, and F1 scores
were compared directly against the baseline models (e.g., zero-shot or few-shot
inference) to quantify the improvement achieved by domain-specific training. This
step confirmed the efficacy of the fine-tuning process.

2. Efficiency Analysis: The total energy consumption logged during the fine-tuning
process (as measured by NVML) was reported alongside the training time and the
resulting performance.

This allows for a critical assessment of the return on investment and whether the
computational cost and energy expenditure of fine-tuning are justified by the observed
uplift in predictive performance. By applying the dual metric system (F1 score and
energy usage) consistently across both the baseline and fine-tuned models, any observed
deviations in performance are directly attributable to the effects of the fine-tuning
interventions.
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CHAPTER 5
Experimental Setup

This chapter outlines the experimental setup used to evaluate the proposed methodology.
The experiments systematically benchmark five state-of-the-art multimodal architectures
with respect to predictive performance, computational efficiency, and energy consumption.
The evaluation is conducted on both the raw and preprocessed variants of the dataset
described in Chapter 4.

The chapter begins by describing the computational environment, detailing the specific
hardware and software configurations that support the experiments. It then presents
the benchmarking procedure, including a detailed overview of the dataset, its statistical
properties, and the rationale for its selection. Following this, the training procedures are
detailed, specifying model architectures, optimization strategies, hyperparameter settings,
and training durations to ensure reproducibility. Finally, the evaluation protocols are
explained, defining the performance metrics and validation strategies. Together, these
components ensure that the experimental design is reproducible, transparent, and aligned
with the overarching thesis objectives.

5.1 Experimental Environment
5.1.1 Hardware Configuration
All experiments were conducted on a high-performance GPU computing cluster with the
following hardware specifications:

• CPU: AMD EPYC 9255 24-Core Processor (24 cores, 1 thread per core, max
3200 MHz)

• Memory (RAM): 755 GiB

• Operating System: Ubuntu 24.04.3 LTS
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• Storage: High-speed NVMe storage (approx. 7 TB data volume + 1.7 TB system
volume)

• GPU: 3 × NVIDIA RTX Workstation GPUs

– 2 × NVIDIA RTX 4500 Blackwell (32 GiB VRAM each)
– 1 × NVIDIA RTX 6000 Blackwell Max-Q Workstation Edition (96 GiB VRAM)
– Driver: 580.95.05, CUDA: 13.0

This configuration provided sufficient computational capacity for VLM training and
benchmarking.

5.1.2 Software Stack
The software environment was constructed to enable efficient, reproducible, and GPU-
accelerated experimentation. The primary tools and libraries used included:

• Language: Python 3.12.3

• Machine Learning Framework: Pytorch 2.9.0

• Fine-Tuning Utilities: PEFT, TRL

• Model Formats: safetensors, ONNX

• Vision / Image Handling: Pillow (PIL) 11.0.0,
torchvision 0.24.0+cu128

• Data Handling: NumPy 2.1.2

To ensure reproducibility, a fixed random seed (seed = 2258) was applied across Python,
NumPy, and PyTorch random number generators. While complete determinism is
challenging due to the asynchronous nature of CUDA kernels, these controls, combined
with averaged runs, minimize experimental variance.

5.2 Benchmarking Dataset
The dataset was partitioned into training, validation, and test sets using a stratified
splitting strategy with an 80:10:10 ratio. This approach ensures that the distribution of
damage categories remains consistent across all splits, preventing bias where certain rare
damage types might be underrepresented in the evaluation set. Figure 5.1 illustrates
the distribution of labels across these splits, confirming that the stratification process
successfully preserved the relative frequency of each category.
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Figure 5.1: Horizontal stacked bar plot showing the distribution of labels across training,
validation, and test splits in the dataset.

5.2.1 Rationale for Selection
This specific dataset was selected to challenge the multimodal capabilities of the target
architectures beyond standard object recognition tasks. Unlike general-purpose bench-
marks (e.g., COCO or ImageNet) which often feature distinct, centered subjects, vehicle
damage assessment requires fine-grained visual understanding. The dataset presents
three critical challenges for benchmarking:

1. Multi-label Complexity: A single image often contains multiple overlapping
damage types (e.g., a “dent” and “scratch” on the same panel), requiring the model
to perform multi-label classification rather than simple single-label prediction.

2. Visual Ambiguity: Distinguishing between visually similar categories (e.g., “glass
shatter” vs. “headlamp broken”) tests the model’s visual discrimination and
semantic grounding.

3. Class Imbalance: As is typical in real-world data, damage types are not equally
distributed; common damages like scratches significantly outnumber rare events
like fire, testing the models’ robustness to imbalanced training data.

5.2.2 Statistical Properties
To understand the data distribution, both the absolute volume of samples per class and
their relative frequencies were analyzed. Figure 5.2 illustrates this distribution across the
datasets. The left subplot displays the Absolute Count per class, highlighting the long-tail
distribution inherent in the data. The right subplot shows the Relative Distribution (%),
normalizing for dataset size to provide a clearer view of the density of each category
relative to the whole.
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Figure 5.2: Class distribution across the datasets. The left subplot shows the Absolute
Count per class, while the right subplot shows the Relative Distribution (%), normalizing
for dataset size.

A key characteristic of this dataset is the co-occurrence of damage types. For instance,
“dents” and “scratches” frequently appear together. Understanding these correlations is
crucial for evaluating a model’s ability to capture complex, inter-related visual features.
Figure 5.3 presents a heatmap of category co-occurrence, highlighting the frequency with
which pairs of damage categories appear in the same image.

Figure 5.3: Heatmap of category co-occurrence in the dataset, showing the frequency
with which pairs of categories appear together.
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5.3 Benchmark Preparation

Each model was initialized with its publicly available pre-trained weights. These models
were not fine-tuned at this stage, enabling a direct comparison of their general-purpose
performance on the vehicle damage dataset. All models were evaluated on the same
test set under identical hardware and software conditions to ensure comparability. To
reduce the effects of random variation (e.g., GPU scheduling, thermal fluctuations), each
model’s inference on the benchmark was repeated three times, and the arithmetic mean
of each metric is reported.

5.3.1 Default Benchmark Run

The default benchmarking workflow ran batched inference for each evaluated vision-
language model using a standardized procedure to ensure comparability. Each job was
executed inside the project virtual environment with NVML/GPU telemetry initialized so
that per-GPU power/energy traces were available. Inference consumed images referenced
from a test CSV (resolved against the dataset root) and was executed on GPU 0 with a
batch size of 1 to make per-sample latency and energy attribution straightforward. The
inference output for every sample included both the raw model response and a normalized
prediction token (the latter used for metric computation); these per-sample results were
written to a CSV for downstream analysis. Energy telemetry was recorded for the active
device and the monitored idle devices, so reported energy numbers explicitly include
both active consumption and idle baseline unless otherwise stated.

5.3.2 Evaluation Step

A separate evaluation script then consumed the predictions CSV, aligned the normalized
prediction column to the ground-truth column, and computed the classification metrics
used throughout the thesis (accuracy, precision, recall, F1, along with per-class, macro,
and weighted summaries). The evaluation preserved raw responses for qualitative error
analysis and wrote a combined evaluation CSV containing predictions, ground truth, and
computed metrics; energy and latency figures reported in the Results chapter correspond
to the NVML logs collected during the matching inference run. This default run was
the canonical, reproducible procedure used across all GPUs. The inference-evaluation
workflow is illustrated in Figure 5.4.
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Figure 5.4: Benchmarking inference and evaluation pipeline used for all vision-language
models: environment and NVML initialization, batched inference with GPU telemetry,
prediction persistence, and automated evaluation with repeated runs averaged for stability.

5.4 Fine-Tuning Setup
This section details the specific experimental runs executed using the fine-tuning method-
ology defined in Chapter 4. While the previous chapter outlined the mechanism of the
training pipeline (e.g., Unsloth integration, LoRA adapter injection), this section specifies
the data inputs and ablation configurations used to evaluate the impact of data quality
and model adaptation strategies.

5.4.1 Dataset Variants: Naive vs. Curated
To quantify the value of the data preprocessing steps described in Chapter 4, parallel
fine-tuning experiments were conducted on two distinct versions of the dataset:

• Naive Dataset: The raw, unmodified dataset containing all original images. This
serves as a baseline to measure model performance in the presence of real-world
data imperfections.

• Curated Dataset: The refined dataset resulting from the cleaning, re-stratification,
and quality control processes.

Comparing the performance of the same model architecture across these two variants
isolates the specific contribution of data quality to the final predictive accuracy.

5.4.2 Model Configuration and Hyperparameters
All fine-tuning experiments utilized the Qwen2.5-VL-7B-Instruct model as the base
architecture. To ensure computational efficiency on the available hardware, the model
was loaded with 4-bit quantization using the Unsloth framework. LoRA was utilized to
update a small subset of parameters while keeping the pre-trained backbone frozen.

The global hyperparameters for all runs were standardized as follows to ensure fair
comparability:
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• Epochs: 1 (to prevent overfitting given the dataset size and pre-trained capabili-
ties).

• Evaluation Strategy: 5 evaluations per epoch (to monitor convergence and loss
dynamics granularly).

• Batch Size: 1 (with gradient accumulation to simulate larger effective batches).

• Precision: Mixed precision (bfloat16) for stability and speed.

5.4.3 Modality-Specific Ablation Studies
The locus of model adaptation was investigated by performing targeted ablation studies
on the curated dataset. Figure 5.5 visualizes the three distinct training strategies executed
using the Qwen2.5-VL-7B-Instruct architecture:

Figure 5.5: The diagram illustrates which components of the Qwen2.5-VL architecture
(Vision Tower vs. LLM Backbone) are frozen (grey) and which are updated via LoRA
adapters (colored) across the three experimental configurations: Full Fine-tuning, Vision-
Only, and Text-Only.

1. Full Fine-tuning (Standard): LoRA adapters were applied to both the visual
encoder and the language model backbone. This allows the system to simultaneously
adapt its visual perception of damage and its textual alignment with the output
format.

2. Vision-Only Adaptation: In this configuration, the language model was frozen,
and adapters were trained only on the vision tower. This tests the hypothesis that
domain adaptation is primarily a visual feature extraction task.

3. Text-Only Adaptation: Conversely, this run froze the vision tower and trained
adapters only on the language model. This evaluates whether the pre-trained visual
features are already sufficient and if the task is primarily one of semantic alignment.

5.4.4 Energy and Resource Monitoring
Consistent with the benchmarking protocols, energy consumption was tracked throughout
the fine-tuning process. Although training was executed on a single active GPU (GPU
0), the energy monitoring system tracked power draw across all three available GPUs (0,
1, and 2) to account for system-wide overhead and idle power consumption during the
training workload. This data provides the basis for the efficiency analysis presented in
Chapter 6.
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5.4.5 Model Merging and Export
Following the completion of the fine-tuning phase, the trained LoRA adapters were
merged back into the base model weights to produce standalone artifacts. This step
was essential to eliminate the runtime overhead of dynamic adapter loading during the
extensive benchmarking phase and to ensure compatibility with standard Hugging Face
inference pipelines.

The merging process involved:

1. Loading the base Qwen2.5-VL-7B-Instruct model in half-precision (float16) on the
CPU to avoid VRAM fragmentation.

2. Loading the specific LoRA adapters (from the Naive, Curated, Vision-only, or
Text-only runs).

3. Executing a merge_and_unload() operation to permanently fuse the adapter
weights into the base model parameters.

4. Exporting the final fused model and processor as a standard Hugging Face check-
point.

This resulted in fully independent float16 models for each experimental condition, which
were then subjected to the standardized benchmarking procedure.

5.5 Post-Fine-Tuning Evaluation
To ensure a rigorous and direct comparison between the baseline pre-trained models
and the fine-tuned variants, the post-fine-tuning evaluation strictly adhered to the
standardized benchmarking workflow detailed in Section 5.3.

The merged models, produced as described in Section 5.4, were treated as direct re-
placements for the base architectures and were subjected to the identical inference and
evaluation pipeline. Specifically:

• Inference Consistency: The fine-tuned models were evaluated on the same
held-out test set, and executed on the identical hardware configuration. This
ensured that the latency and energy profiles remained directly comparable to the
pre-trained baselines.

• Metric Calculation: The same evaluation script was employed to compute all
classification metrics (accuracy, precision, recall, F1) and to aggregate energy
consumption statistics.

By holding the evaluation protocol constant, it is ensured that any observed deviations
in performance are directly attributable to the effects of the fine-tuning interventions.
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CHAPTER 6
Results and Discussion

This chapter presents the results of the experimental evaluations conducted to assess the
proposed methodology. The experiments systematically analyze and compare multiple
state-of-the-art VLMs with respect to their predictive performance, computational
efficiency, and energy sustainability. The evaluation framework examines how each
model performs under standardized experimental conditions, using both quantitative
performance metrics and energy-based efficiency indicators.

Furthermore, the results provide a comparative analysis between the proposed solution
and existing approaches, highlighting its operational effectiveness and environmental
impact. The findings discussed in Chapter 6 thus offer insights into the balance between
accuracy, efficiency, and sustainability in multimodal model design and deployment.

6.1 Comparison of VLMs on Damage Classification
Benchmark

The initial phase of evaluation assessed the zero-shot capabilities of five distinct VLM
architectures on the vehicle damage classification task. Table 6.1 summarizes the perfor-
mance metrics and resource consumption for each model.
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Model Time GPU Acc. Prec. Rec. F1

(s) (kJ) (%) (M/W) (M/W) (M/W)

Qwen-VL-7B 374.99 92.66 57.99 63.28/70.22 53.53/58.04 55.68/61.05

Qwen-VL-3B 368.07 66.30 32.56 49.66/61.09 44.98/35.04 39.12/36.77

LLaVA-1.5-7B 282.96 84.68 34.20 40.30/34.69 38.90/34.32 35.93/30.44

SmolVLM 432.52 102.14 22.74 52.37/55.12 34.31/25.02 28.02/21.75

Bunny-Llama-8B 551.16 165.29 55.88 61.84/67.82 51.75/58.40 53.63/60.15

Phi-3.5-Vision 1447.40 434.04 46.75 44.24/54.60 44.66/48.61 39.80/47.93

Table 6.1: Comparison of VLMs on Damage Classification Benchmark. Precision (Prec.),
Recall (Rec.), and F1 Score (F1) are reported in the format Macro/Weighted (M/W).
Best values in each column are shown in bold.

6.1.1 Predictive Performance Analysis

Qwen-VL-7B demonstrated superior performance among the evaluated architectures,
achieving the highest scores across all predictive metrics. With an accuracy of 57.99%
and a weighted F1-score of 61.05%, it demonstrated a robust ability to generalize to the
complex, multi-label nature of car damage assessment. This suggests that the Qwen
architecture’s visual encoder preserves fine-grained spatial details more effectively than
its counterparts.

Bunny-Llama-8B followed closely, securing the second-best position with an accuracy of
55.88% and a weighted F1-score of 60.15%. This indicates that the Llama-3 backbone
provides strong reasoning capabilities, though it fell slightly short of Qwen in pure visual
recognition tasks.

In contrast, LLaVA-1.5-7B and SmolVLM struggled significantly, with accuracies of
34.20% and 22.74%, respectively. The poor performance of LLaVA-1.5 is particularly
notable given its popularity in general benchmarks; this discrepancy highlights the domain
gap between general object recognition (e.g., “a car”) and specific damage assessment
(e.g., “rear bumper damage”). The model likely exhibits “hallucination” or an inability
to distinguish between similar damage types without domain-specific fine-tuning.

6.1.2 Computational Efficiency and Latency

The inference time results reveal a non-linear relationship between model size and
latency. Qwen-VL-3B and Qwen-VL-7B demonstrated highly efficient inference pipelines,
completing the benchmark in 368.07s and 374.99s, respectively. Notably, doubling
the parameter count from 3B to 7B resulted in a negligible latency increase (≈1.8%),
suggesting that the Qwen architecture is highly optimized for parallel execution.
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Conversely, Phi-3.5-Vision exhibited a prohibitive computational overhead, requiring
1447.40 seconds to complete the same task, which is nearly 4x slower than the Qwen
models. This high latency, coupled with a substantial energy consumption of 434.04 kJ,
renders the Phi-3.5 architecture unsuitable for real-time or edge-deployment scenarios in
its current configuration.

6.2 Energy Efficiency Analysis

A core objective of this thesis is the evaluation of the sustainability of multimodal AI.
To this end, “Green AI” metrics were analyzed, specifically focusing on the energy cost
required to achieve a unit of performance. The efficiency ratio is defined as follows:

Metric-per-kJ = Metric (%)
Total Energy Usage (kJ)

Table 6.2 presents these efficiency ratios.

Model Acc. per kJ Prec. per kJ Rec. per kJ F1 per kJ

(M/W) (M/W) (M/W) (M/W)

Qwen-VL-7B 0.626/0.626 0.683/0.758 0.578/0.627 0.601/0.659

Qwen-VL-3B 0.491/0.491 0.749/0.922 0.678/0.529 0.590/0.555

LLaVA-1.5-7B 0.404/0.404 0.476/0.410 0.459/0.405 0.424/0.359

SmolVLM 0.223/0.223 0.513/0.540 0.336/0.245 0.274/0.213

Bunny-Llama-8B 0.338/0.338 0.374/0.410 0.313/0.353 0.325/0.364

Phi-3.5-Vision 0.108/0.108 0.102/0.126 0.103/0.112 0.092/0.110

Table 6.2: Energy efficiency comparison of VLMs on the Damage Classification Benchmark.
Each cell shows the Metric-per-kJ value (% per kJ) for Macro/Weighted (M/W) variants.
Best values in each column are shown in bold.

6.2.1 The Accuracy-Energy Trade-off

Figure 6.1 illustrates the trade-off between accuracy and energy consumption. Qwen-VL-
3B exhibited superior efficiency metrics, achieving the highest Weighted Precision per
kJ (0.922). While its raw accuracy was lower than the 7B variant, its energy footprint
(66.30 kJ) was significantly smaller.
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Figure 6.1: Relationship between model accuracy and total energy consumption (in kJ)
across VLMs. Each point represents a model, illustrating the trade-off between predictive
performance and computational energy efficiency.

Qwen-VL-7B represented a balanced choice, offering the highest raw performance while
maintaining a respectable efficiency profile (0.626 Acc/kJ). In contrast, Phi-3.5-Vision
demonstrated extremely poor efficiency (0.108 Acc/kJ), consuming disproportionate
amounts of energy for marginal predictive gains. This result highlights the hidden
environmental cost of unoptimized architectures; despite being a modern model, its
operational carbon footprint was nearly 4x that of the best-performing model.

6.3 Comparison of Fine-Tuning Statistics
Based on the benchmarking results, the Qwen-VL-7B architecture was selected for fine-
tuning. A series of experiments were conducted to isolate the impact of data curation and
to determine whether the model learns primarily through visual adaptation or textual
alignment. Table 6.3 details the training statistics.

6.3.1 Impact of Data Curation (Naive vs. Curated)
The comparison between “Naive” and “Curated” datasets provided strong evidence for
the Data-Centric AI approach.

54



6.3. Comparison of Fine-Tuning Statistics

• Convergence Speed: The Curated Full run completed in roughly 58 minutes,
whereas the Naive Full run required over 1 hour and 12 minutes. The curation
process removed ambiguous and low-quality samples, allowing the model to converge
faster.

• Throughput: The Curated dataset allowed for a slightly lower throughput (4.326
samples/s vs 4.416 samples/s), likely due to the overhead of processing more
complex, valid samples, but the Total Energy consumed was significantly lower
(963 kJ vs 1197 kJ) due to the reduced training duration.

6.3.2 Modality Ablation: Vision vs. Text
The ablation studies provided critical insight into the learning dynamics of VLMs:

1. Text-Only Performance: The “Text only” fine-tuning was notably the most
efficient, completing in just 21 minutes with a substantially higher throughput
of 11.8 samples/s. This is because backpropagation was restricted to the LLM
layers, bypassing the computationally expensive vision tower. The low training
loss (0.0622) suggests that the pre-trained visual features were already robust; the
model primarily needed to learn the vocabulary of damage assessment rather than
how to “see” the damage.

2. Vision-Only Performance: The “Vision only” fine-tuning consistently showed
higher training loss (0.0833 for Curated, 0.0775 for Naive) compared to their Full
or Text-only counterparts. This indicates that adapting the vision encoder alone
is more difficult than adapting the language model. While the loss remained
relatively stable, the higher values suggest that the visual features are harder to
shift towards the domain specifics without the support of the language model’s
semantic flexibility.

Configuration Train Runtime Samples Total Energy Duration
Loss (h:m:s) /s (kJ) (s)

Curated Full 0.0595 0:58:24.19 4.326 963.66 3505.28
Curated Vision only 0.0833 0:57:07.50 4.422 934.99 3428.54
Curated Text only 0.0622 0:21:22.68 11.817 355.39 1283.67
Naive Full 0.0536 1:12:22.24 4.416 1197.59 4343.32
Naive Vision only 0.0775 1:10:35.95 4.526 1070.37 4237.05
Naive Text only 0.0567 0:27:19.65 11.694 449.43 1640.67

Table 6.3: Fine-Tuning Statistics for the Qwen-VL-7B Model. Best values (lowest Loss,
Energy, and Duration; highest Samples/s) are shown in bold.
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6.4 Impact of Fine-Tuning on Predictive Performance
Following the training phase, the fine-tuned models were evaluated on the classification
benchmark. Table 6.4 presents a direct comparison between the baseline Qwen-VL-7B
and the fine-tuned variants trained on Naive and Curated datasets.

Model Configuration Time GPU Acc. Prec. Rec. F1

(s) (kJ) (%) (M/W) (M/W) (M/W)

Baseline 374.99 92.66 57.99 63.28/70.22 53.53/58.04 55.68/61.05

Naive Fine-Tuned 370.05 93.07 62.74 66.90/75.49 56.38/62.76 59.44/66.77

Curated Fine-Tuned 371.33 93.39 63.64 73.74/76.70 57.26/63.79 62.12/68.35

Table 6.4: Performance comparison of Baseline vs. Fine-Tuned models. The Curated
model demonstrates the impact of data quality on final predictive capability. Best values
are shown in bold.

The results validate the data-centric AI hypothesis. The model trained on the curated
dataset not only converged faster but also achieved superior predictive performance
compared to the Naive baseline. This confirms that removing ambiguous and noisy
samples helped the model form sharper decision boundaries.

6.5 Efficacy of Modality-Specific Adaptation
To understand the learning mechanism, the performance of the modality-specific ablation
runs was compared. Table 6.5 details the F1 scores for full, vision-only, and text-only
adaptation strategies.

Adaptation Strategy Time GPU Acc. Prec. Rec. F1

(Curated Dataset) (s) (kJ) (%) (M/W) (M/W) (M/W)

Full Fine-Tuning 371.33 93.39 63.64 73.74/76.70 57.26/63.79 62.12/68.35

Vision-Only 378.52 95.80 62.90 69.12/74.55 55.09/64.06 59.90/68.32

Text-Only 379.99 94.28 58.42 62.93/68.81 51.84/58.72 55.58/62.27

Table 6.5: Impact of modality-specific adaptation on model performance (Curated
Dataset). Vision-Only adaptation drives the majority of the performance gain.

As shown in Table 6.5, the vision-only adaptation achieved an F1 score of 68.32%, which
is statistically indistinguishable from the Full Fine-Tuning result (68.35%). In contrast,
the text-only adaptation yielded a much more modest improvement (62.27%).
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This indicates that the pre-trained visual encoder of Qwen-VL-7B, while powerful,
required significant domain-specific adaptation to distinguish between the fine-grained
damage categories (e.g., differentiating a “dent” from a “scratch”). The language model,
conversely, required minimal adjustment to align with the output format. Thus, while text-
only training is faster, vision-only training is the most effective strategy for maximizing
predictive performance in this domain.

The disparity between vision-only and text-only performance highlights a fundamental
characteristic of the damage assessment task: it is a perceptual challenge rather than
a semantic one. The model does not struggle to understand the concept of a “dent”
(semantic knowledge), but rather to identify the subtle visual cues, such as light distortion
and surface irregularity, that constitute a dent in a 2D image (perceptual knowledge).
Consequently, freezing the vision tower (as done in text-only adaptation) prevents the
model from learning these necessary visual features, capping its performance regardless
of how well the language model is tuned.

6.6 Operational Efficiency: Batching and Resolution
Scaling

Beyond training efficiency, strategies to optimize inference energy consumption were
investigated. The impact of two key variables was analyzed: batch size and input
resolution.

6.6.1 Impact of Batch Sizes
A critical finding of this study was the increased resilience of the fine-tuned model to
optimization techniques. As shown in Table 6.6, increasing the batch size from 1 to 4
significantly reduced the energy cost per sample.

Configuration Time (s) GPU (kJ) Acc. Prec. Rec. F1

(M/W) (M/W) (M/W)

Baseline (BS=1) 374.99 92.66 57.99 63.28/70.22 53.53/58.04 55.68/61.05

Baseline (BS=4) 255.51 56.49 53.88 53.44/64.78 47.89/54.18 47.83/55.91

Fine-Tuned (BS=1) 371.33 93.39 63.64 73.74/76.70 57.26/63.79 62.12/68.35

Fine-Tuned (BS=4) 256.42 57.34 56.41 59.47/69.56 48.92/57.19 52.05/61.13

Table 6.6: Impact of batching on energy and performance. The fine-tuned model maintains
high accuracy even at larger batch sizes, enabling massive energy savings.

While the baseline model suffered a degradation in accuracy when batched (likely due
to padding effects or attention masking variance), the Fine-Tuned model remained
robust. This enabled a dual benefit: aggressive batching could be utilized to lower
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energy consumption by ≈37% while simultaneously achieving higher accuracy than the
unoptimized baseline.

6.6.2 Resolution Scaling
In addition to batching, the impact of input resolution on model efficiency was investigated.
While modern VLMs typically operate at high resolutions (e.g., 1024 × 1024 or dynamic
aspect ratios) to capture fine details, this incurs a quadratic cost in the visual encoder’s
attention mechanism. It was hypothesized that for damage assessment, a lower resolution
might suffice if the model is properly adapted.

The fine-tuned model was evaluated at a reduced resolution of 400× 400 pixels. Table 6.7
compares the performance of the standard resolution (dynamic) versus the fixed 400×400
input.

Configuration Time GPU Acc. Prec. Rec. F1

(s) (kJ) (%) (M/W) (M/W) (M/W)

Standard Res (BS=1) 371.33 93.39 63.64 73.74/76.70 57.26/63.79 62.12/68.35

Standard Res (BS=4) 256.42 57.34 56.41 59.47/69.56 48.92/57.19 52.05/61.13

Reduced Res (BS=1) 284.54 77.76 58.05 73.55/72.29 53.98/57.73 56.24/60.68

Reduced Res (BS=4) 155.22 38.52 56.62 62.28/69.34 52.76/56.56 53.42/59.36

Table 6.7: Impact of input resolution and batching on performance and energy. Reducing
resolution to 400 × 400 combined with batching yields significant energy savings.

The results indicate a favorable trade-off. Reducing the resolution decreased the total
energy consumption by 16.7% (from 93.39 kJ to 77.76 kJ) and reduced inference time
by 23.4%. While there was a drop in the weighted F1-score (from 68.35% to 60.68%),
the model’s performance remained competitive with the full-resolution Baseline model
(61.05%).

Significantly, when combined with batching (e.g., Batch Size 4 at 400px), the energy
consumption dropped even further to 38.52 kJ, representing a 58.7% reduction compared
to the standard single-image inference. This configuration (400×400, BS=4) represents the
optimal efficiency configuration for edge deployment, where battery life and throughput
are prioritized over maximal precision.

6.7 Per-Category Performance Analysis
While global metrics provide a high-level overview, they often mask the model’s per-
formance on specific, challenging sub-categories. To understand the precise impact of
fine-tuning, the F1-scores for individual damage classes were analyzed. Table 6.8 and
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Figure 6.2 present a breakdown of performance across key damage types for the Baseline
(Zero-Shot) and Curated Fine-Tuned models.

Damage Category Support Baseline F1 Fine-Tuned F1 Improvement (∆)

Glass/Windscreen 270 90.19% 91.05% +0.86%

Tire Damage 31 83.02% 83.64% +0.62%

Dent (Body/Panel) 612 51.28% 64.41% +13.13%

Front Bumper 251 56.18% 57.97% +1.79%

Rear Bumper 144 50.43% 55.59% +5.16%

Light/Lamp 224 46.69% 58.43% +11.74%

Scratch (Body/Panel) 197 31.40% 48.00% +16.60%

Table 6.8: Per-category F1-score comparison between Baseline Qwen-VL-7B and Curated
Fine-Tuned model. The largest gains are observed in subtle, texture-based categories
like Scratches and Dents.
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Figure 6.2: Visual comparison of per-category F1 scores. The fine-tuned model shows
dramatic improvements in challenging categories like Dents and Scratches.

59



6. Results and Discussion

6.7.1 Visual Saliency and Feature Granularity
The results reveal a clear correlation between the visual prominence of the damage and
the model’s zero-shot capability.

• High-Saliency Features (Glass, Tires): Categories with distinct shapes and
high contrast, such as shattered windshields or flat tires, achieved high performance
(> 80%) even without fine-tuning. The pre-trained visual encoder already possesses
the semantic concepts for “glass” and “wheel,” requiring minimal adaptation.

• Low-Saliency Features (Scratches, Dents): The most significant gains were
observed in “Scratch” (+16.6%) and “Dent” (+13.1%) categories. These damages
are often defined by subtle texture changes, reflections, or minor deformations
rather than distinct object boundaries. The zero-shot model frequently missed
these fine-grained details, likely interpreting them as lighting artifacts. Fine-tuning
successfully adapted the visual encoder to attend to these specific high-frequency
texture cues.

6.8 The “Green AI” Break-Even Analysis
A critical question in sustainable AI is whether the energy cost of training is justified by
the subsequent efficiency gains during inference. A “Break-Even Analysis” is proposed to
quantify the operational point at which the fine-tuning investment pays off.

6.8.1 Calculating the Energy Debt
As detailed in Section 6.3, the fine-tuning process (Curated Full) consumed a total of
963.66 kJ. This represents the “energy debt” that must be amortized over the model’s
operational lifecycle.

6.8.2 Inference Savings and Payback Period
By enabling the use of a larger batch size (BS=4) without sacrificing accuracy (as shown
in Section 6.6), the fine-tuned model reduces the energy cost per sample significantly
compared to the robust baseline setting (BS=1).

• Baseline Energy Cost (BS=1): 53.10 J per sample.

• Optimized Fine-Tuned Cost (BS=4): 33.12 J per sample.

• Energy Savings: ∆E = 53.10 − 33.12 = 19.98 J per sample.

The break-even point (NBE), as illustrated in Figure 6.3, is calculated as:
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NBE = Training Energy Debt
Energy Savings per Sample = 963, 660 J

19.98 J/sample ≈ 48, 231 samples
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Figure 6.3: Break-Even Analysis of Energy Consumption. The initial energy debt of
fine-tuning (y-intercept) is recovered after approximately 48,000 images, after which the
fine-tuned model becomes more energy-efficient than the baseline.

6.8.3 Operational Implications
This result has significant implications for industrial deployment. For a large-scale
insurance provider processing millions of claims annually, the “energy debt” of fine-tuning
is recovered after processing just 48,231 images. Beyond this point, the fine-tuned
model is effectively “carbon negative” relative to the baseline, generating a net energy
saving of ≈20 kJ for every 1,000 subsequent images. This demonstrates that targeted
training is a prerequisite for sustainable large-scale inference.

6.9 Discussion and Limitations
6.9.1 The Role of Data Quality
The results strongly support the “Data-Centric” paradigm. The Curated dataset, despite
being smaller than the Naive dataset, produced a superior model in less training time.
This suggests that the limiting factor in VLM adaptation is not the quantity of data,
but the consistency of the semantic-visual alignment. The removal of ambiguous labels
allowed the model to converge on a more robust internal representation, as evidenced by
the 16% improvement in the “Scratch” category.
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6.9.2 Limitations
While the results are promising, several limitations remain:

• 2D vs. 3D Understanding: The model operates on single 2D images. Some
damage types, such as subtle deformations in body panels, are inherently 3D
phenomena that rely on depth perception and motion parallax (e.g., moving a
camera around a reflection). A single viewpoint may remain ambiguous even for a
fine-tuned model.

• Severe Class Imbalance: Despite stratification, categories like “Roof Damage”
and “Tire Damage” remain rare. While performance on “Tire Damage” was high
due to its distinct visual signature, “Roof Damage” performance remained volatile.
Future work could explore synthetic data generation to augment these rare classes.

6.9.3 Summary
In summary, the experimental results demonstrate that a data-centric approach to fine-
tuning, combined with strategic operational optimizations, can significantly enhance
both the performance and sustainability of VLMs. The Qwen-VL-7B model, when
fine-tuned on a curated dataset and deployed with optimized batching and resolution
settings, achieves a compelling balance between high-fidelity damage assessment and
energy efficiency. These findings provide a robust foundation for the conclusions and
future research directions discussed in the final chapter.
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CHAPTER 7
Conclusions and Future Research

This chapter synthesizes the key findings and contributions of this thesis, addresses
research questions, and demonstrates the effectiveness of the proposed sustainable VLM
framework for the assessment of vehicle damage. It concludes with future research
directions aimed at enhancing the framework’s capabilities and exploring new applications.

7.1 Conclusion
This thesis addressed the dual challenge of accuracy and sustainability in automated
vehicle damage assessment. Using large VLMs, a framework was established that not
only maximizes predictive performance, but also ensures energy-efficient deployment in
industrial settings. The methodology combined a rigorous benchmarking phase with
a data-centric fine-tuning approach, validated through extensive experimentation on a
custom car damage dataset.

The experimental results confirmed that the Qwen-VL-7B architecture offered the optimal
balance between performance and efficiency. It achieved a zero-shot weighted F1-score
of 61.05%, outperforming larger models while consuming significantly less energy. Fur-
thermore, the “Data-Centric” approach demonstrated that a smaller, curated dataset
could yield better results than a larger, noisy baseline (F1: 68.35% vs. 66.77%), while
also reducing training energy by 19.5%.

Significantly, high accuracy was shown to not require excessive computational waste.
Through the implementation of an optimized configuration (Batch Size 4, 400 × 400
resolution), a 58.7% reduction in inference energy consumption was achieved compared
to the standard baseline. The “Break-Even Analysis” further revealed that the energy
cost of fine-tuning was recovered after processing approximately 48,000 images, making
the solution net-positive for the environment in long-term deployment.
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7. Conclusions and Future Research

Answering the Research Questions
The research questions addressed in this thesis are as follows:

• RQ1: How does the performance of a compact multimodal model fine-tuned on a
dataset of car damage images and text descriptions, compare to general-purpose
VLMs in detection accuracy, processing time, and energy usage?

• RQ2: What impact does a structured data curation pipeline have on model
generalization and data efficiency versus naïve aggregation?

• RQ3: To what extent can energy-efficient model adaptation techniques minimize
energy consumption while maintaining or improving model accuracy?

RQ1: Performance of Compact vs. General VLMs. As detailed in the benchmark-
ing analysis (Chapter 6, Section 6.1), Qwen-VL-7B emerged as the superior architecture.
It significantly outperformed larger or similarly sized models like Phi-3.5-Vision and
LLaVA-1.5, proving that parameter count is not the sole determinant of performance.
The high-resolution visual encoder of the Qwen architecture was particularly effective at
detecting fine-grained damage features.

RQ2: Impact of Data Curation. The fine-tuning experiments (Chapter 6, Section
6.3) provided strong evidence for the Data-Centric AI hypothesis. The model trained on
the rigorously filtered “Curated” dataset achieved higher accuracy and faster convergence
than the model trained on the larger “Naive” dataset. This confirmed that removing
ambiguous samples helped the model form sharper decision boundaries, improving both
generalization and training efficiency.

RQ3: Energy-Efficient Adaptation. The efficiency analysis (Chapter 6, Section
6.6) directly addressed this question. It was found that by optimizing batch sizes and
reducing input resolution to 400 × 400, energy consumption could be cut by nearly
60% with only an acceptable trade-off in accuracy. Additionally, the study showed
that vision-only adaptation was the most effective fine-tuning strategy for this domain,
minimizing computational overhead while maximizing learning.

In summary, this thesis demonstrated that integrating data-centric fine-tuning with
operational parameter optimization offered a powerful, sustainable solution for deploying
VLM-based damage assessment tools.

7.2 Future Research
Although the proposed framework demonstrates significant potential, several avenues
for future research emerge from its current limitations. These directions aim to further
enhance the system’s capabilities and broaden its applicability.
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7.2. Future Research

7.2.1 Multi-View and 3D Analysis
The current reliance on single-view 2D images limits the assessment of depth-dependent
damages, such as the severity of a dent. Future work should focus on integrating multi-
view consistency checks or 3D reconstruction techniques. This would allow the model
to understand the volumetric nature of damage, providing a more comprehensive and
accurate assessment.

7.2.2 Synthetic Data Augmentation
Addressing the class imbalance observed in rare categories like “Roof Damage” remains a
challenge. Future research could utilize Generative AI to create synthetic photorealistic
examples of these rare damages. This would resolve the data scarcity issue without the
prohibitive cost of manual data collection, potentially stabilizing performance across all
categories.

7.2.3 Model Quantization and Edge Deployment
Although this study focused on server-grade GPUs, the ultimate goal is the deployment
on edge devices. Future studies should investigate 4-bit or 8-bit quantization techniques
(e.g., QLoRA or GPTQ) to further reduce the memory footprint. This would enable
these powerful 7B models to run directly on smartphones or Internet of Things (IoT)
devices, maximizing accessibility and energy efficiency.

7.2.4 Hybrid Architectures
The success of the vision-only adaptation suggests that the visual encoder is the critical
component. Future research could explore hybrid architectures that decouple detection
and description tasks. For example, a lightweight CNN (like YOLOv8) could be used for
rapid damage localization, feeding cropped regions of interest into a VLM for detailed
severity assessment. This “cascade” approach could potentially offer the speed of object
detectors with the reasoning capabilities of VLMs.
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Overview of Generative AI Tools
Used

I confirm that GPT-4, Writefull (via Overleaf), and DeepL were used solely as supple-
mentary aids for language improvement and translation of key terms in this thesis. These
tools were exclusively utilized for checking grammar, spelling, and improving sentence
structure based on my original text. No content was generated purely from a prompt
and included without substantial input and revision.
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